Implemented graphs, kinda ugly for now

This commit is contained in:
2018-12-16 17:33:44 +01:00
parent 486f952118
commit 9127b93d10

77
main.py
View File

@@ -2,8 +2,8 @@ from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import itertools
from argparse import ArgumentParser
from time import time
import numpy as np
@@ -14,8 +14,8 @@ import matplotlib.pyplot as plt
P = 0.1
ALPHA = 0.80
EPSILON = 0.0001 # Convergence criterium
ALPHA = 0.90
EPSILON = 1e-8 # Convergence criterium
# Global state
MAZE = None # Map of the environment
@@ -79,11 +79,6 @@ def _valid_target(target):
)
def _cartesian(arr):
"""Return cartesian product of sets."""
return itertools.product(*arr)
def u_of_x(x):
"""Return a list of allowed actions for the given state x."""
return [u for u in ACTIONS if _valid_target(_move(x, ACTIONS[u]))]
@@ -132,7 +127,15 @@ def plot_j_policy_on_maze(j, policy):
plt.quiver(S_TO_IJ[:,1], S_TO_IJ[:,0],
[ACTIONS[u][1] for u in policy],
[-ACTIONS[u][0] for u in policy])
plt.show()
plt.gca().get_xaxis().set_visible(False)
plt.gca().get_yaxis().set_visible(False)
def plot_cost_history(hist):
error = [((h - hist[-1])**2).sum()**0.5 for h in hist[:-1]]
plt.xlabel('Number of iterations')
plt.ylabel('Cost function error')
plt.plot(error)
def _policy_improvement(j, g):
@@ -158,8 +161,9 @@ def _evaluate_policy(policy, g):
return np.linalg.solve(np.eye(len(S_TO_IJ)) - ALPHA*M, G)
def value_iteration(g):
def value_iteration(g, return_history=False):
j = np.random.randn(len(S_TO_IJ))
history = [j]
while True:
policy = _policy_improvement(j, g)
j_new = []
@@ -167,28 +171,41 @@ def value_iteration(g):
j_new.append(h_function(x, u, j, g))
j_old = j
j = np.array(j_new)
if return_history:
history.append(j)
if max(abs(j - j_old)) < EPSILON:
break
if not return_history:
return j, policy
else:
return history
def policy_iteration(g):
def policy_iteration(g, return_history=False):
j = None
policy = [np.random.choice(u_of_x(x)) for x in S_TO_IJ]
history = []
while True:
j_old = j
j = _evaluate_policy(policy, g)
history.append(j)
if j_old is not None and max(abs(j - j_old)) < EPSILON:
break
policy = _policy_improvement(j, g)
if not return_history:
return j, policy
else:
return history
if __name__ == '__main__':
# Argument Parsing
ap = ArgumentParser()
ap.add_argument('maze_file', help='Path to maze file')
args = ap.parse_args()
start = time()
# Initialization
MAZE = np.genfromtxt(
args.maze_file,
dtype=str,
@@ -196,6 +213,40 @@ if __name__ == '__main__':
STATE_MASK = (MAZE != '1')
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[STATE_MASK]
j, policy = value_iteration(cost_treasure)
print(j)
# J / policy for both algorithms for both cost functions for 3 alphas
costs = {'g1': cost_treasure, 'g2': cost_energy}
optimizers = {'Value Iteration': value_iteration,
'Policy Iteration': policy_iteration}
for a in [0.9, 0.5, 0.01]:
plt.figure()
plt.suptitle('DISCOUNT = ' + str(a))
i = 1
for opt in ['Value Iteration', 'Policy Iteration']:
for g in ['g1', 'g2']:
name = ' / '.join([opt, g])
ALPHA = a
j, policy = optimizers[opt](costs[g])
plt.subplot(2, 2, i)
plt.gca().set_title(name)
plot_j_policy_on_maze(j, policy)
i += 1
# plt.show()
# Error graphs
for opt in ['Value Iteration', 'Policy Iteration']:
plt.figure()
plt.suptitle(opt)
i = 1
for g in ['g1', 'g2']:
for a in [0.9, 0.8, 0.7]:
name = 'Cost: {}, discount: {}'.format(g, a)
ALPHA = a
history = optimizers[opt](costs[g], return_history=True)
plt.subplot(2, 3, i)
plt.gca().set_title(name)
plot_cost_history(history)
i += 1
print('I ran in {} seconds'.format(time() - start))
plt.show()