decided to fuck everything up

This commit is contained in:
2019-01-26 15:46:26 +01:00
parent b469086b4b
commit abb3649194
3 changed files with 53 additions and 19 deletions

3
.gitignore vendored
View File

@@ -6,3 +6,6 @@
# Inputs
*.txt
# Latex
build/

49
main.py
View File

@@ -13,10 +13,9 @@ mpl.use('TkAgg') # fixes my macOS bug
import matplotlib.pyplot as plt
P = 0.1
ALPHA = 0.90
EPSILON = 1e-12
# EPSILON = 1e-12 # Convergence criterium
P = 0.1 # Slip probability
ALPHA = 0.90 # Discount factor
A2 = np.array([ # Action index to action mapping
[-1, 0], # Up
[ 1, 0], # Down
@@ -31,7 +30,7 @@ S_TO_IJ = None # Mapping of state vector to coordinates
SN = None # Number of states
U_OF_X = None # The allowed action space matrix representation
PW_OF_X_U = None # The probability distribution of disturbance
G1_X = None # The cost function vector representation (depends only on state)
G1_X = None # The cost function vector representation
G2_X = None # The second cost function vector representation
F_X_U_W = None # The System Equation
@@ -63,6 +62,7 @@ def init_global(maze_filename):
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
SN = len(S_TO_IJ)
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
ij_to_s[state_mask] = np.arange(SN)
@@ -99,6 +99,12 @@ def init_global(maze_filename):
def plot_j_policy_on_maze(j, policy):
j_norm = (j - j.min()) / (j.max() - j.min()) + 1e-50
j_log = np.log10(j_norm)
print(j)
print(j_norm)
print(j_log)
print('-' * 50)
heatmap = np.full(MAZE.shape, np.nan)
heatmap[S_TO_IJ[:, 0], S_TO_IJ[:, 1]] = j
cmap = mpl.cm.get_cmap('coolwarm')
@@ -147,13 +153,16 @@ def policy_iteration(j, g):
return policy, j
def _terminate(j, j_old, policy, policy_old):
# eps = EPSILON
# return np.abs(j - j_old).max() < eps
def _terminate_pi(j, j_old, policy, policy_old):
return np.all(policy == policy_old)
def dynamic_programming(optimizer_step, g, return_history=False):
def _terminate_vi(j, j_old, policy, policy_old):
eps = ALPHA**SN
return np.abs(j - j_old).max() < eps
def dynamic_programming(optimizer_step, g, terminator, return_history=False):
j = np.zeros(SN, dtype=np.float64)
policy = None
history = []
@@ -163,7 +172,7 @@ def dynamic_programming(optimizer_step, g, return_history=False):
policy, j = optimizer_step(j, g)
if return_history:
history.append(j)
if _terminate(j, j_old, policy, policy_old):
if terminator(j, j_old, policy, policy_old):
break
if not return_history:
return j, policy
@@ -185,19 +194,20 @@ if __name__ == '__main__':
costs = {'g1': G1_X, 'g2': G2_X}
optimizers = {'Value Iteration': value_iteration,
'Policy Iteration': policy_iteration}
terminators = {'Value Iteration': _terminate_vi,
'Policy Iteration': _terminate_pi}
for a in [0.9, 0.5, 0.01]:
plt.figure()
plt.figure(figsize=(9, 6))
plt.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95)
plt.suptitle('DISCOUNT = ' + str(a))
i = 1
for opt in ['Value Iteration', 'Policy Iteration']:
for cost in ['g1', 'g2']:
name = ' / '.join([opt, cost])
name = '{} / {}'.format(opt, cost)
ALPHA = a
j, policy = dynamic_programming(optimizers[opt], costs[cost])
print(name)
print(j)
# print(name, j)
j, policy = dynamic_programming(optimizers[opt], costs[cost],
terminators[opt])
plt.subplot(2, 2, i)
plt.gca().set_title(name)
plot_j_policy_on_maze(j, policy)
@@ -205,15 +215,16 @@ if __name__ == '__main__':
# Error graphs
for opt in ['Value Iteration', 'Policy Iteration']:
plt.figure()
plt.subplots_adjust(wspace=0.45, hspace=0.45)
plt.figure(figsize=(9, 6))
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.suptitle(opt)
i = 1
for cost in ['g1', 'g2']:
for a in [0.9, 0.8, 0.7]:
for a in [0.99, 0.7, 0.5]:
name = 'Cost: {}, discount: {}'.format(cost, a)
ALPHA = a
history = dynamic_programming(optimizers[opt], costs[cost],
terminators[opt],
return_history=True)
plt.subplot(2, 3, i)
plt.gca().set_title(name)

20
report.latex Normal file
View File

@@ -0,0 +1,20 @@
\documentclass{article}
\usepackage[a4paper, margin=1in]{geometry}
\usepackage{amsmath}
\usepackage{fancyhdr}
\pagestyle{fancy}
\usepackage{lastpage}
\cfoot{Page \thepage\ of \pageref{LastPage}}
\rhead{Pavel Lutskov, 03654990}
\lhead{Programming Assignment}
\title{\huge Approximate Dynamic Programming and Reinforcement Learning \\
\Large Programming Assignment}
% \subtitle{Assignment 1}
\author{Pavel Lutskov, 03654990}
\begin{document}
\maketitle
\section{Environment modeling}
Blya ya zamodeliroval environment.
\end{document}