perfect PI terminator, nicer graphs
This commit is contained in:
23
main.py
23
main.py
@@ -15,7 +15,8 @@ import matplotlib.pyplot as plt
|
|||||||
|
|
||||||
P = 0.1
|
P = 0.1
|
||||||
ALPHA = 0.90
|
ALPHA = 0.90
|
||||||
EPSILON = 1e-12 # Convergence criterium
|
EPSILON = 1e-12
|
||||||
|
# EPSILON = 1e-12 # Convergence criterium
|
||||||
A2 = np.array([ # Action index to action mapping
|
A2 = np.array([ # Action index to action mapping
|
||||||
[-1, 0], # Up
|
[-1, 0], # Up
|
||||||
[ 1, 0], # Down
|
[ 1, 0], # Down
|
||||||
@@ -56,7 +57,7 @@ def init_global(maze_filename):
|
|||||||
# Basic maze structure initialization
|
# Basic maze structure initialization
|
||||||
MAZE = np.genfromtxt(
|
MAZE = np.genfromtxt(
|
||||||
maze_filename,
|
maze_filename,
|
||||||
dtype=str,
|
dtype='|S1',
|
||||||
)
|
)
|
||||||
state_mask = (MAZE != '1')
|
state_mask = (MAZE != '1')
|
||||||
|
|
||||||
@@ -72,7 +73,7 @@ def init_global(maze_filename):
|
|||||||
maze_cost[MAZE == 'T'] = 50
|
maze_cost[MAZE == 'T'] = 50
|
||||||
maze_cost[MAZE == 'G'] = -1
|
maze_cost[MAZE == 'G'] = -1
|
||||||
G1_X = maze_cost.copy()[state_mask]
|
G1_X = maze_cost.copy()[state_mask]
|
||||||
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == False
|
maze_cost[(MAZE=='0') | (MAZE=='S') | (MAZE=='G')] += 1
|
||||||
G2_X = maze_cost.copy()[state_mask]
|
G2_X = maze_cost.copy()[state_mask]
|
||||||
|
|
||||||
# Actual environment modelling
|
# Actual environment modelling
|
||||||
@@ -146,20 +147,23 @@ def policy_iteration(j, g):
|
|||||||
return policy, j
|
return policy, j
|
||||||
|
|
||||||
|
|
||||||
def _terminate(j, j_old):
|
def _terminate(j, j_old, policy, policy_old):
|
||||||
# TODO: DIS
|
# eps = EPSILON
|
||||||
return np.abs(j - j_old).max() < EPSILON
|
# return np.abs(j - j_old).max() < eps
|
||||||
|
return np.all(policy == policy_old)
|
||||||
|
|
||||||
|
|
||||||
def dynamic_programming(optimizer_step, g, return_history=False):
|
def dynamic_programming(optimizer_step, g, return_history=False):
|
||||||
j = np.zeros(SN, dtype=np.float64)
|
j = np.zeros(SN, dtype=np.float64)
|
||||||
|
policy = None
|
||||||
history = []
|
history = []
|
||||||
while True:
|
while True:
|
||||||
j_old = j
|
j_old = j
|
||||||
|
policy_old = policy
|
||||||
policy, j = optimizer_step(j, g)
|
policy, j = optimizer_step(j, g)
|
||||||
if return_history:
|
if return_history:
|
||||||
history.append(j)
|
history.append(j)
|
||||||
if _terminate(j, j_old):
|
if _terminate(j, j_old, policy, policy_old):
|
||||||
break
|
break
|
||||||
if not return_history:
|
if not return_history:
|
||||||
return j, policy
|
return j, policy
|
||||||
@@ -191,7 +195,9 @@ if __name__ == '__main__':
|
|||||||
name = ' / '.join([opt, cost])
|
name = ' / '.join([opt, cost])
|
||||||
ALPHA = a
|
ALPHA = a
|
||||||
j, policy = dynamic_programming(optimizers[opt], costs[cost])
|
j, policy = dynamic_programming(optimizers[opt], costs[cost])
|
||||||
print(name, j)
|
print(name)
|
||||||
|
print(j)
|
||||||
|
# print(name, j)
|
||||||
plt.subplot(2, 2, i)
|
plt.subplot(2, 2, i)
|
||||||
plt.gca().set_title(name)
|
plt.gca().set_title(name)
|
||||||
plot_j_policy_on_maze(j, policy)
|
plot_j_policy_on_maze(j, policy)
|
||||||
@@ -200,6 +206,7 @@ if __name__ == '__main__':
|
|||||||
# Error graphs
|
# Error graphs
|
||||||
for opt in ['Value Iteration', 'Policy Iteration']:
|
for opt in ['Value Iteration', 'Policy Iteration']:
|
||||||
plt.figure()
|
plt.figure()
|
||||||
|
plt.subplots_adjust(wspace=0.45, hspace=0.45)
|
||||||
plt.suptitle(opt)
|
plt.suptitle(opt)
|
||||||
i = 1
|
i = 1
|
||||||
for cost in ['g1', 'g2']:
|
for cost in ['g1', 'g2']:
|
||||||
|
|||||||
Reference in New Issue
Block a user