Files
adprl/main.py

319 lines
8.8 KiB
Python

from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from argparse import ArgumentParser
from time import time
import numpy as np
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
P = 0.1
ALPHA = 0.90
EPSILON = 1e-8 # Convergence criterium
# Global state
MAZE = None # Map of the environment
STATE_MASK = None # Fields of maze belonging to state space
S_TO_IJ = None # Mapping of state vector to coordinates
IJ_TO_S = None # Mapping of coordinates to state vector
U_OF_X = None # The allowed action space matrix representation
PW_OF_X_U = None # The probability distribution of disturbance
G1_X = None # The cost function vector representation (depends only on state)
G2_X = None # The second cost function vector representation
F_X_U_W = None # The state function
SN = None # Number of states
A2 = np.array([
[-1, 0],
[1, 0],
[0, -1],
[0, 1],
[0, 0]
])
ACTIONS = {
'UP': (-1, 0),
'DOWN': (1, 0),
'LEFT': (0, -1),
'RIGHT': (0, 1),
'IDLE': (0, 0)
}
def _ij_to_s(ij):
return np.argwhere(np.all(ij == S_TO_IJ, axis=1)).flatten()[0]
# TODO: for all x and u in one go
def h_function(x, u, j, g):
"""Return E_pi_w[g(x, pi(x), w) + alpha*J(f(x, pi(x), w))]."""
pw = pw_of_x_u(x, u)
expectation = sum(
pw[w] * (g(x, u, w) + ALPHA*j[_ij_to_s(f(x, u, w))])
for w in pw
)
return expectation
def h_matrix(j, g):
result = (PW_OF_X_U * (g[F_X_U_W] + ALPHA*j[F_X_U_W])).sum(axis=2)
result[~U_OF_X] = np.inf # discard invalid policies
return result
def f(x, u, w):
return _move(_move(x, ACTIONS[u]), ACTIONS[w])
def cost_treasure(x, u, w):
xt = f(x, u, w)
options = {
'T': 50,
'G': -1,
}
return options.get(MAZE[xt], 0)
def cost_energy(x, u, w):
xt = f(x, u, w)
options = {
'T': 50,
'G': 0
}
return options.get(MAZE[xt], 1)
def _move(start, move):
return start[0] + move[0], start[1] + move[1]
def _valid_target(target):
return (
0 <= target[0] < MAZE.shape[0] and
0 <= target[1] < MAZE.shape[1] and
MAZE[tuple(target)] != '1'
)
def _init_global(maze_file):
global MAZE, STATE_MASK, SN, S_TO_IJ, IJ_TO_S
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
# Basic maze structure initialization
MAZE = np.genfromtxt(
maze_file,
dtype=str,
)
STATE_MASK = (MAZE != '1')
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[STATE_MASK]
SN = len(S_TO_IJ)
IJ_TO_S = np.zeros(MAZE.shape, dtype=np.int32)
IJ_TO_S[STATE_MASK] = np.arange(SN)
# One step cost functions initialization
maze_cost = np.zeros(MAZE.shape)
maze_cost[MAZE == '1'] = np.nan
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
maze_cost[MAZE == 'T'] = 50
maze_cost[MAZE == 'G'] = -1
G1_X = maze_cost.copy()[STATE_MASK]
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True
G2_X = maze_cost.copy()[STATE_MASK]
# Actual environment modelling
U_OF_X = np.zeros((SN, len(A2)), dtype=np.bool)
PW_OF_X_U = np.zeros((SN, len(A2), len(A2)))
F_X_U_W = np.zeros(PW_OF_X_U.shape, dtype=np.int32)
for ix, x in enumerate(S_TO_IJ):
for iu, u in enumerate(A2):
if _valid_target(x + u):
U_OF_X[ix, iu] = True
if iu in (0, 1):
possible_iw = [2, 3]
elif iu in (2, 3):
possible_iw = [0, 1]
for iw in possible_iw:
if _valid_target(x + u + A2[iw]):
PW_OF_X_U[ix, iu, iw] = P
F_X_U_W[ix, iu, iw] = IJ_TO_S[tuple(x + u + A2[iw])]
# IDLE w is always possible
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
F_X_U_W[ix, iu, -1] = IJ_TO_S[tuple(x + u)]
def u_of_x(x):
"""Return a list of allowed actions for the given state x."""
return [u for u in ACTIONS if _valid_target(_move(x, ACTIONS[u]))]
def pw_of_x_u(x, u):
"""Calculate probabilities of disturbances given state and action.
Parameters
----------
x : tuple of ints
The state coordinate
(it is up to user to ensure this is a valid state).
u : str
The name of the action (again, up to the user to ensure validity).
Returns
-------
dict
A mapping of valid disturbances to their probabilities.
"""
if u in ('LEFT', 'RIGHT'):
possible_w = ('UP', 'IDLE', 'DOWN')
elif u in ('UP', 'DOWN'):
possible_w = ('LEFT', 'IDLE', 'RIGHT')
else: # I assume that the IDLE action is deterministic
possible_w = ('IDLE',)
allowed_w = [
w for w in possible_w if
_valid_target(f(x, u, w))
]
probs = {w: P for w in allowed_w if w != 'IDLE'}
probs['IDLE'] = 1 - sum(probs.values())
return probs
def plot_j_policy_on_maze(j, policy):
heatmap = np.ones(MAZE.shape) * np.nan # Ugly
heatmap[STATE_MASK] = j # Even uglier
cmap = mpl.cm.get_cmap('coolwarm')
cmap.set_bad(color='black')
plt.imshow(heatmap, cmap=cmap)
plt.colorbar()
plt.quiver(S_TO_IJ[:,1], S_TO_IJ[:,0],
A2[policy, 1], -A2[policy, 0])
plt.gca().get_xaxis().set_visible(False)
plt.gca().get_yaxis().set_visible(False)
def plot_cost_history(hist):
error = [((h - hist[-1])**2).sum()**0.5 for h in hist[:-1]]
plt.xlabel('Number of iterations')
plt.ylabel('Cost function error')
plt.plot(error)
def _policy_improvement(j, g):
h_mat = h_matrix(j, g)
return np.argmin(h_mat, axis=1), h_mat.min(axis=1)
def _evaluate_policy(policy, g):
pw_pi = PW_OF_X_U[np.arange(SN), policy] # p(w) given policy for all x
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x))
G = (pw_pi * g[targs]).sum(axis=1)
M = np.zeros((SN, SN)) # Markov matrix for given determ policy
x_from = [x_ff for x_f, nz in
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
for x_ff in [x_f] * nz]
M[x_from, targs[pw_pi > 0]] = pw_pi[pw_pi > 0]
# M[np.arange(SN), F_X_U_W[PW_OF_X_U > 0]] = PW_OF_X_U[PW_OF_X_U > 0]
# for x, u in zip(S_TO_IJ, policy):
# pw = pw_of_x_u(x, u)
# G.append(sum(pw[w] * g(x, u, w) for w in pw))
# targets = [(_ij_to_s(f(x, u, w)), pw[w]) for w in pw]
# iox = _ij_to_s(x)
# for t, pww in targets:
# M[iox, t] = pww
# G = np.array(G)
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
def value_iteration(g, return_history=False):
j = np.zeros(SN)
history = [j]
while True:
# print(j)
policy, j_new = _policy_improvement(j, g)
j_old = j
j = j_new
if return_history:
history.append(j)
if np.abs(j - j_old).max() < EPSILON:
break
if not return_history:
return j, policy
else:
return history
def policy_iteration(g, return_history=False):
j = None
policy = np.full(SN, len(A2) - 1)
history = []
while True:
j_old = j
j = _evaluate_policy(policy, g)
history.append(j)
if j_old is not None and max(abs(j - j_old)) < EPSILON:
break
policy, _ = _policy_improvement(j, g)
if not return_history:
return j, policy
else:
return history
if __name__ == '__main__':
# Argument Parsing
ap = ArgumentParser()
ap.add_argument('maze_file', help='Path to maze file')
args = ap.parse_args()
# start = time()
# Initialization
start = time()
_init_global(args.maze_file)
# J / policy for both algorithms for both cost functions for 3 alphas
costs = {'g1': G1_X, 'g2': G2_X}
optimizers = {'Value Iteration': value_iteration,
'Policy Iteration': policy_iteration}
for a in [0.9, 0.5, 0.01]:
plt.figure()
plt.suptitle('DISCOUNT = ' + str(a))
i = 1
for opt in ['Value Iteration', 'Policy Iteration']:
for g in ['g1', 'g2']:
name = ' / '.join([opt, g])
ALPHA = a
j, policy = optimizers[opt](costs[g])
print(name, j)
plt.subplot(2, 2, i)
plt.gca().set_title(name)
plot_j_policy_on_maze(j, policy)
i += 1
# Error graphs
for opt in ['Value Iteration', 'Policy Iteration']:
plt.figure()
plt.suptitle(opt)
i = 1
for g in ['g1', 'g2']:
for a in [0.9, 0.8, 0.7]:
name = 'Cost: {}, discount: {}'.format(g, a)
ALPHA = a
history = optimizers[opt](costs[g], return_history=True)
plt.subplot(2, 3, i)
plt.gca().set_title(name)
plot_cost_history(history)
i += 1
print('I ran in {} seconds'.format(time() - start))
plt.show()