Files
adprl/main.py

280 lines
9.2 KiB
Python

from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from argparse import ArgumentParser
from time import time
import numpy as np
import matplotlib as mpl
mpl.use('TkAgg') # fixes my macOS bug
import matplotlib.pyplot as plt
import matplotlib.colors as colors
P = 0.1 # Slip probability
ALPHA = 0.8 # Discount factor
A2 = np.array([ # Action index to action mapping
[-1, 0], # Up
[ 1, 0], # Down
[ 0, -1], # Left
[ 0, 1], # Right
[ 0, 0], # Idle
])
# Global state
MAZE = None # Map of the environment
S_TO_IJ = None # Mapping of state vector to coordinates
SN = None # Number of states
U_OF_X = None # The allowed action space matrix representation
PW_OF_X_U = None # The probability distribution of disturbance
G1_X = None # The cost function vector representation
G2_X = None # The second cost function vector representation
F_X_U_W = None # The System Equation
def _valid_target(target):
return (
0 <= target[0] < MAZE.shape[0] and
0 <= target[1] < MAZE.shape[1] and
MAZE[tuple(target)] != '1'
)
def init_global(maze_filename):
global MAZE, SN, S_TO_IJ
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
# Basic maze structure initialization
MAZE = np.genfromtxt(
maze_filename,
dtype='|S1',
)
state_mask = (MAZE != '1')
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
SN = len(S_TO_IJ)
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
ij_to_s[state_mask] = np.arange(SN)
# One step cost functions initialization
maze_cost = np.zeros(MAZE.shape, dtype=np.float64)
maze_cost[MAZE == '1'] = np.nan
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
maze_cost[MAZE == 'T'] = 50
maze_cost[MAZE == 'G'] = -1
G1_X = maze_cost.copy()[state_mask]
# maze_cost[(MAZE=='0') | (MAZE=='S') | (MAZE=='G')] += 1
# G2_X = maze_cost.copy()[state_mask]
G2_X = G1_X + 1
# Actual environment modelling
U_OF_X = np.zeros((SN, len(A2)), dtype=np.bool)
PW_OF_X_U = np.zeros((SN, len(A2), len(A2)), dtype=np.float64)
F_X_U_W = np.zeros(PW_OF_X_U.shape, dtype=np.int32)
for ix, x in enumerate(S_TO_IJ):
for iu, u in enumerate(A2):
if _valid_target(x + u):
U_OF_X[ix, iu] = True
if iu in (0, 1): # (Up, Down)
possible_iw = [2, 3] # [Left, Right]
elif iu in (2, 3): # (Left, Right)
possible_iw = [0, 1] # [Up, Down]
for iw in possible_iw:
if _valid_target(x + u + A2[iw]):
PW_OF_X_U[ix, iu, iw] = P
F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
# Idle w is always possible
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
# Forbid to leave the goal state
# (could've been done through cost function though)
goal_idx = ij_to_s[np.where(MAZE == b'G')][0]
U_OF_X[goal_idx] = False
U_OF_X[goal_idx, -1] = True
PW_OF_X_U[goal_idx] = 0
PW_OF_X_U[goal_idx, -1, -1] = 1
F_X_U_W[goal_idx] = 0
F_X_U_W[goal_idx, -1, -1] = goal_idx
def h_matrix(j, g):
h_x_u = (PW_OF_X_U * (g[F_X_U_W] + ALPHA*j[F_X_U_W])).sum(axis=2)
h_x_u[~U_OF_X] = np.inf # discard invalid policies
return h_x_u
def _policy_improvement(j, g):
h_mat = h_matrix(j, g)
return h_mat.argmin(axis=1), h_mat.min(axis=1)
def _evaluate_policy(policy, g):
pw_pi = PW_OF_X_U[np.arange(SN), policy] # p(w) given policy for all x
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
# Markov matrix for given deterministic policy
M = np.zeros((SN, SN), dtype=np.float64)
x_from = [x_ff for x_f, nz in
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
for x_ff in [x_f] * nz]
M[x_from, targs[pw_pi > 0]] = pw_pi[pw_pi > 0]
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
def value_iteration(g, j, **_):
return _policy_improvement(j, g)
def policy_iteration(g, policy, **_):
j = _evaluate_policy(policy, g)
policy, _ = _policy_improvement(j, g)
return policy, j
def _terminate_pi(j, j_old, policy, policy_old):
return np.all(policy == policy_old)
def _terminate_vi(j, j_old, policy, policy_old):
eps = ALPHA**SN
return np.abs(j - j_old).max() < eps
def dynamic_programming(optimizer_step, g, terminator, return_history=False):
j = np.zeros(SN, dtype=np.float64)
policy = np.full(SN, len(A2) - 1, dtype=np.int32) # idle policy
history = []
while True:
j_old = j
policy_old = policy
policy, j = optimizer_step(g, j=j, policy=policy)
if return_history:
history.append(j)
if terminator(j, j_old, policy, policy_old):
break
if not return_history:
return j, policy
else:
history = np.array(history)
# cover some edgy cases
if (history[-1] == history[-2]).all():
history = history[:-1]
return history
def plot_j_policy_on_maze(j, policy, normalize=True):
heatmap = np.full(MAZE.shape, np.nan, dtype=np.float64)
if normalize:
# Non-linear, but a discrete representation of different costs
norm = colors.BoundaryNorm(boundaries=np.sort(j)[1:-1], ncolors=256)
vmin = 0
vmax = 256
else:
norm = lambda x: x
vmin = None
vmax = None
heatmap[S_TO_IJ[:, 0], S_TO_IJ[:, 1]] = norm(j)
cmap = mpl.cm.get_cmap('coolwarm')
cmap.set_bad(color='black')
plt.imshow(
heatmap, vmin=vmin, vmax=vmax, cmap=cmap,
)
# quiver has some weird behavior, the arrow y component must be flipped
plt.quiver(S_TO_IJ[:, 1], S_TO_IJ[:, 0], A2[policy, 1], -A2[policy, 0])
plt.gca().get_xaxis().set_visible(False)
plt.tick_params(axis='y', which='both', left=False, labelleft=False)
def plot_cost_history(hist):
error = np.log10(
np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
)
plt.xticks(np.arange(0, len(error), len(error) // 5))
plt.yticks(np.linspace(error.min(), error.max(), 5))
plt.plot(error)
if __name__ == '__main__':
# Argument Parsing
ap = ArgumentParser()
ap.add_argument('maze_file', help='Path to maze file')
args = ap.parse_args()
# Initialization
start = time()
init_global(args.maze_file)
# J / policy for both algorithms for both cost functions for 3 alphas
costs = {'g1': G1_X, 'g2': G2_X}
optimizers = {'Value Iteration': value_iteration,
'Policy Iteration': policy_iteration}
terminators = {'Value Iteration': _terminate_vi,
'Policy Iteration': _terminate_pi}
# cost_transform = {'g1': _neg_log_neg, 'g2': _gamma}
for normalize in [False, True]:
for a in [0.9, 0.5, 0.01]:
plt.figure(figsize=(9, 7))
plt.subplots_adjust(top=0.9, bottom=0.05, left=0.1, right=0.95,
wspace=0.1)
plt.suptitle('Discount: {}'.format(a) +
('\nNormalized view' if normalize else ''))
i = 1
for opt in ['Value Iteration', 'Policy Iteration']:
for cost in ['g1', 'g2']:
name = '{} / {}'.format(opt, cost)
ALPHA = a
j, policy = dynamic_programming(optimizers[opt],
costs[cost],
terminators[opt])
plt.subplot(2, 2, i)
plot_j_policy_on_maze(j, policy, normalize=normalize)
if i <= 2:
plt.gca().set_title('Cost: {}'.format(cost),
fontsize='x-large')
if (i - 1) % 2 == 0:
plt.ylabel(opt, fontsize='x-large')
i += 1
# Error graphs
for opt in ['Value Iteration', 'Policy Iteration']:
plt.figure(figsize=(6, 10))
plt.figtext(0.5, 0.04, 'Number of iterations', ha='center',
fontsize='large')
plt.figtext(0.01, 0.5, 'Logarithm of cost RMSE', va='center',
rotation='vertical', fontsize='large')
plt.subplots_adjust(wspace=0.38, hspace=0.35, left=0.205, right=0.98,
top=0.9)
plt.suptitle(opt)
i = 1
for a in [0.99, 0.7, 0.1]:
for cost in ['g1', 'g2']:
ALPHA = a
history = dynamic_programming(optimizers[opt], costs[cost],
terminators[opt],
return_history=True)
plt.subplot(3, 2, i)
plot_cost_history(history)
if i <= 2:
plt.gca().set_title('Cost: {}'.format(cost))
if (i - 1) % 2 == 0:
plt.ylabel('Discount: {}'.format(a), fontsize='large')
i += 1
print('I ran in {} seconds'.format(time() - start))
plt.show()