diff --git a/library.py b/library.py index 11ca407..c4b0485 100644 --- a/library.py +++ b/library.py @@ -39,7 +39,7 @@ def create_mnist_network(): tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) - model.compile(loss='categorical_crossentropy', optimizer='sgd', + model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model @@ -51,7 +51,7 @@ def create_cbow_network(win, embed): blowup = tf.keras.layers.Dense(len(vocab), activation='softmax')(cbow) mod = tf.keras.Model(inputs=ctxt, outputs=blowup) mod.compile( - optimizer='sgd', + optimizer='adam', loss='categorical_crossentropy', ) return mod diff --git a/main.c b/main.c index 0277fab..5495f9b 100644 --- a/main.c +++ b/main.c @@ -323,8 +323,8 @@ void learner() { int my_batcher_rid = rid % number_of(BATCHER); int batcher = mpi_id_from_role_id(BATCHER, my_batcher_rid); int dispatcher = mpi_id_from_role_id(DISPATCHER, 0); - INFO_PRINTF("%d is Learner %d assigned to batcher %d\n", getpid(), - rid, my_batcher_rid); + INFO_PRINTF("Learner %d (pid %d) is assigned to pipeline %d\n", rid, + getpid(), my_batcher_rid); PyObject* net = create_network(WIN, EMB); WeightList wl; @@ -413,7 +413,7 @@ void dispatcher() { float delta_t = finish - start; float delta_l = first_loss - crt_loss; INFO_PRINTF( - "Laptop MPI sgd consecutive_batch W%d E%d " + "Laptop MPI adam consecutive_batch W%d E%d " "BS%d R%d bpe%d LPR%d pp%d," "%f,%f,%f\n", WIN, EMB, BS, COMM, ITER, lpr, g_argc - 1, delta_l / COMM, delta_l / delta_t, min_loss);