after literally hours of pain, keras learns mnist

This commit is contained in:
2019-11-29 22:10:25 -08:00
parent 87208d599d
commit 04c35ed9b6
5 changed files with 191 additions and 196 deletions

View File

@@ -1,30 +1,30 @@
cimport numpy as np
import numpy as np
import mynet as mn
from sys import stderr
from libc.stdlib cimport malloc
from libc.string cimport memcpy
import nn
ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist()
opt = mn.SGDOptimizer(lr=0.1)
X_train, y_train, X_test, y_test = nn.load_mnist()
cdef extern from "numpy/arrayobject.h":
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Dense:
long[2] shape
int ownmem
ctypedef public struct Weight:
size_t dims
long* shape
float* W
float* b
ctypedef public struct Network:
size_t n_layers;
Dense* layers;
ctypedef public struct WeightList:
size_t n_weights;
Weight* weights;
cdef public char *greeting():
@@ -35,33 +35,31 @@ cdef public void debug_print(object o):
print(o)
cdef public void predict(
Network* net,
float* X,
size_t batch_size
):
pass
cdef public object create_network():
return nn.create_mnist_network()
cdef public void set_net_weights(object net, WeightList* wl):
net.set_weights(wrap_weight_list(wl))
cdef public void step_net(
Network* c_net,
float* batch_data,
size_t batch_size
object net, float* X, float* y, size_t batch_size
):
net = wrap_c_network(c_net)
cdef size_t in_dim = net.geometry[0]
cdef size_t out_dim = net.geometry[-1]
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
# print(np.argmax(batch[:, in_dim:], axis=1), flush=True)
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
in_shape = (batch_size,) + net.layers[0].input_shape[1:]
out_shape = (batch_size,) + net.layers[-1].output_shape[1:]
X_train = np.asarray(<float[:np.prod(in_shape)]>X).reshape(in_shape)
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape)
net.train_on_batch(X_train, y_train)
cdef public float eval_net(Network* c_net):
net = wrap_c_network(c_net)
return net.evaluate(X_test, y_test, 'cls')
cdef public float eval_net(object net):
return net.evaluate(X_test, y_test, verbose=False)[1]
cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
cdef public void mnist_batch(float* X, float* y, size_t bs,
int part, int total):
if total == 0:
X_pool, y_pool = X_train, y_train
else:
@@ -70,71 +68,66 @@ cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
y_pool = y_train[part*partsize:(part+1)*partsize]
idx = np.random.choice(len(X_pool), bs, replace=True)
arr = np.concatenate([X_pool[idx], y_pool[idx]], axis=1)
assert arr.flags['C_CONTIGUOUS']
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
X_r = X_pool[idx]
y_r = y_pool[idx]
assert X_r.flags['C_CONTIGUOUS']
assert y_r.flags['C_CONTIGUOUS']
memcpy(X, <float*>PyArray_DATA(X_r), X_r.size * sizeof(float))
memcpy(y, <float*>PyArray_DATA(y_r), y_r.size * sizeof(float))
cdef public void create_c_network(Network* c_net):
net = create_network()
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
c_net.layers[i].shape[0] = d0
c_net.layers[i].shape[1] = d1
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
assert l.W.flags['C_CONTIGUOUS']
assert l.b.flags['C_CONTIGUOUS']
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
c_net.layers[i].ownmem = 1
cdef public void init_weightlist_like(WeightList* wl, object net):
weights = net.get_weights()
wl.n_weights = len(weights)
wl.weights = <Weight*>malloc(sizeof(Weight) * wl.n_weights)
for i, w in enumerate(weights):
sh = np.asarray(w.shape, dtype=long)
wl.weights[i].dims = sh.size
wl.weights[i].shape = <long*>malloc(sizeof(long) * sh.size)
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
assert sh.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].shape, <long*>PyArray_DATA(sh),
sh.size * sizeof(long))
cdef public void combo_c_net(Network* c_frank, Network* c_nets,
size_t num_nets):
"""ONE-LINER HOW BOUT THAT HUH."""
combo_net(
wrap_c_network(c_frank),
[wrap_c_network(&c_nets[i]) for i in range(num_nets)]
)
cdef public void update_weightlist(WeightList* wl, object net):
weights = net.get_weights()
for i, w in enumerate(weights):
w = w.astype(np.float32)
assert w.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].W, <float*>PyArray_DATA(w),
w.size * sizeof(float))
cdef public void be_like(Network* c_dst, Network* c_src):
"""Conveniently transform one C network into another."""
dst = wrap_c_network(c_dst)
src = wrap_c_network(c_src)
dst.be_like(src)
cdef public void combo_weights(
WeightList* wl_frank, WeightList* wls, size_t num_weights
):
"""Not a one-liner anymore :/"""
alpha = 1. / num_weights
frank = wrap_weight_list(wl_frank)
for w in frank:
w[:] = 0
for i in range(num_weights):
for wf, ww in zip(frank, wrap_weight_list(&wls[i])):
wf += alpha * ww
cdef object wrap_c_network(Network* c_net):
"""Create a thin wrapper not owning the memory."""
net = create_network(init=False)
for i, l in enumerate(net.layers):
d0, d1 = c_net.layers[i].shape[0], c_net.layers[i].shape[1]
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
return net
cdef list wrap_weight_list(WeightList* wl):
weights = []
for i in range(wl.n_weights):
w_shape = <long[:wl.weights[i].dims]>wl.weights[i].shape
w_numel = np.prod(w_shape)
weights.append(
np.asarray(<float[:w_numel]>wl.weights[i].W).reshape(w_shape)
)
return weights
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def create_network(init=True):
return mn.Network((784, 30, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
initialize=init)
def combo_net(net, nets, alpha=None):
tot = len(nets)
if alpha is None:
alpha = [1 / tot] * tot
for l in net.layers:
l.set_weights(np.zeros_like(t) for t in l.trainables())
for n, a in zip(nets, alpha):
for la, lb in zip(n.layers, net.layers):
lb.update(t * a for t in la.trainables())