well done sending a network over mpi, pat pat

now do a lot of nets in parallel and then we'll talk
This commit is contained in:
2019-11-25 20:23:33 -08:00
parent a80a3de4fa
commit 04e0b9829c
2 changed files with 144 additions and 26 deletions

View File

@@ -2,25 +2,38 @@ cimport numpy as np
import numpy as np import numpy as np
import mynet as mn import mynet as mn
from libc.stdlib cimport malloc
ctr = [] ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist() X_train, y_train, X_test, y_test = mn.load_mnist()
cdef extern from "numpy/arrayobject.h":
object PyArray_SimpleNewFromData(
int nd, long* dims, int typenum, void* data
)
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Dense:
long[2] shape
int ownmem
float* W
float* b
ctypedef public struct Network:
Py_ssize_t n_layers;
Dense* layers;
cdef public char * greeting(): cdef public char * greeting():
return f'The value is {3**3**3}'.encode('utf-8') return f'The value is {3**3**3}'.encode('utf-8')
cdef public void debug_print(object o): cdef public void debug_print(object o):
print(o.flags) print(o.flags)
# print(o)
cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] dot(
np.ndarray[np.float32_t, ndim=2, mode='c'] x,
np.ndarray[np.float32_t, ndim=2, mode='c'] y
):
return x @ y
cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] predict( cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] predict(
@@ -66,7 +79,41 @@ cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] mnist_batch(
arr = np.concatenate([X_train[idx], y_train[idx]], axis=1) arr = np.concatenate([X_train[idx], y_train[idx]], axis=1)
return arr return arr
cdef public float arrsum(
cdef public void inspect_array(
np.ndarray[np.float32_t, ndim=2, mode='c'] a np.ndarray[np.float32_t, ndim=2, mode='c'] a
): ):
return np.sum(a) print(a.flags)
print(a.dtype)
print(a.sum())
cdef public void be_like_cified(
object net,
Network* c_net
):
"""WARNING this function makes an assumption that `net` and `c_net`
have the same shape and hopefully is going to crash horribly otherwise."""
for i, l in enumerate(net.layers):
w1, w2 = l.W.shape
l.W[:] = <float[:w1,:w2]>c_net.layers[i].W
l.b[:] = <float[:w2]>c_net.layers[i].b
cdef public void cify_network(
object net, Network* c_net
):
"""WARNING `c_net` is valid as long as `net` is
Whoever has `c_net` is responsible for freeing c_net.layers list
Layers themselves don't need any de-init.
"""
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(len(net.layers) * sizeof(Dense))
for i, l in enumerate(net.layers):
w1, w2 = l.W.shape
c_net.layers[i].shape[0] = w1
c_net.layers[i].shape[1] = w2
c_net.layers[i].W = <float*>PyArray_DATA(l.W)
c_net.layers[i].b = <float*>PyArray_DATA(l.b)
c_net.layers[i].ownmem = 0

103
main.c
View File

@@ -11,14 +11,21 @@
#define P_SLAVE 1 #define P_SLAVE 1
#define P_MASTER 2 #define P_MASTER 2
#define COMM 100 #define COMM 50
#define ITER 20 #define ITER 32
#define BS 50 #define BS 32
typedef enum{
DATA,
SLAVE,
MASTER
} Role;
// Reads some data and converts it to 2D float array // Reads some data and converts it to 2D float array
void data_reader() { void data_reader() {
while (1) { while (1) {
PyArrayObject* batch = mnist_batch(10); PyArrayObject* batch = mnist_batch(BS);
long* shape = PyArray_SHAPE(batch); long* shape = PyArray_SHAPE(batch);
MPI_Send(shape, 2, MPI_LONG, P_SLAVE, 0, MPI_COMM_WORLD); MPI_Send(shape, 2, MPI_LONG, P_SLAVE, 0, MPI_COMM_WORLD);
@@ -28,6 +35,51 @@ void data_reader() {
} }
} }
void send_network(Network* c_net, int dest, int tag) {
Py_ssize_t n_layers = c_net->n_layers;
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
for (Py_ssize_t i = 0; i < n_layers; i++) {
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
}
}
void recv_network(Network* c_net, int src, int tag) {
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
for (Py_ssize_t i = 0; i < c_net->n_layers; i++) {
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
c_net->layers[i].ownmem = 1;
c_net->layers[i].W = malloc(sizeof(float) * d0 * d1);
c_net->layers[i].b = malloc(sizeof(float) * d1);
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
void free_network_contents(Network* c_net) {
for (Py_ssize_t i = 0; i < c_net->n_layers; i++) {
if (c_net->layers[i].ownmem) {
free(c_net->layers[i].b);
free(c_net->layers[i].W);
}
}
free(c_net->layers);
}
// Receives weight updates and trains, sends learned weights back to master // Receives weight updates and trains, sends learned weights back to master
void slave_node() { void slave_node() {
PyObject* net = create_network(); PyObject* net = create_network();
@@ -46,23 +98,43 @@ void slave_node() {
PyArrayObject* batch = PyArray_SimpleNewFromData( PyArrayObject* batch = PyArray_SimpleNewFromData(
2, shape, NPY_FLOAT32, data); 2, shape, NPY_FLOAT32, data);
step_net(net, batch); step_net(net, batch);
Py_DECREF(batch);
free(data);
} }
printf("%f\n", eval_net(net)); Network c_net;
cify_network(net, &c_net);
send_network(&c_net, P_MASTER, 0);
free_network_contents(&c_net);
} }
Py_DECREF(net);
} }
// Stores most up-to-date model, sends it to slaves for training // Stores most up-to-date model, sends it to slaves for training
void master_node() { void master_node() {
PyObject* frank = create_network();
for (int i = 0; i < COMM; i++) { for (int i = 0; i < COMM; i++) {
char go; char go;
MPI_Send(&go, 1, MPI_CHAR, P_SLAVE, 0, MPI_COMM_WORLD); MPI_Send(&go, 1, MPI_CHAR, P_SLAVE, 0, MPI_COMM_WORLD);
Network c_net;
recv_network(&c_net, P_SLAVE, MPI_ANY_TAG);
be_like_cified(frank, &c_net);
free_network_contents(&c_net);
printf("Frank: %f\n", eval_net(frank));
} }
Py_DECREF(frank);
}
Role map_node() {
int node;
MPI_Comm_rank(MPI_COMM_WORLD, &node);
if (node == 0) return DATA;
if (node == 1) return SLAVE;
if (node == 2) return MASTER;
return SLAVE;
} }
int main (int argc, const char **argv) { int main (int argc, const char **argv) {
int node;
MPI_Init(NULL, NULL); MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &node);
// Cython Boilerplate // Cython Boilerplate
PyImport_AppendInittab("library", PyInit_library); PyImport_AppendInittab("library", PyInit_library);
@@ -72,17 +144,16 @@ int main (int argc, const char **argv) {
PyObject* library_module = PyImport_ImportModule("library"); PyObject* library_module = PyImport_ImportModule("library");
// Actual Code // Actual Code
if (node == 0) { switch (map_node()) {
data_reader(); case DATA: data_reader();
} break;
else if (node == 1) { case SLAVE: slave_node();
slave_node(); break;
} case MASTER: master_node();
else if (node == 2) { break;
master_node();
} }
// Cython Finalizing Boilerplate // Finalizing Boilerplate
Py_DECREF(library_module); Py_DECREF(library_module);
Py_Finalize(); Py_Finalize();
MPI_Finalize(); MPI_Finalize();