stop refactoring and get some stuff huggin' done

This commit is contained in:
2019-12-12 21:10:41 -08:00
parent 966bbc904c
commit 2bbb1d243c
4 changed files with 97 additions and 68 deletions

View File

@@ -1,19 +1,38 @@
import os
import json
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from mynet import onehot
WIN = 2
EMB = 32
HERE = os.path.abspath(os.path.dirname(__file__))
DATA = os.path.join(HERE, 'data')
def read_cfg():
with open(os.path.join(HERE, 'cfg.json')) as f:
return json.load(f)
CFG = read_cfg()
DATA = os.path.join(HERE, CFG['data'])
CORPUS = os.path.join(DATA, 'corpus.txt')
VOCAB = os.path.join(DATA, 'vocab.txt')
TEST = os.path.join(DATA, 'test.txt')
vocab = {
w: i for i, w in enumerate(open(VOCAB).read().splitlines(keepends=False))
}
inv_vocab = sorted(vocab, key=vocab.get)
def read_vocab_list():
with open(VOCAB) as f:
return f.read().split()
inv_vocab = read_vocab_list()
vocab = {w: i for i, w in enumerate(inv_vocab)}
X_test = None
y_test = None
def word_tokenize(s: str):
@@ -21,13 +40,14 @@ def word_tokenize(s: str):
return l.split()
def create_test_dataset(win):
def create_test_dataset():
import numpy as np
test_dataset = np.vectorize(vocab.get)(np.genfromtxt(TEST, dtype=str))
assert test_dataset.shape[1] == 2*win + 1
X_test = test_dataset[:, [*range(0, win), *range(win+1, win+win+1)]]
y_test = onehot(test_dataset[:, win], nc=len(vocab))
return X_test, y_test
assert test_dataset.shape[1] == 2*WIN + 1
global X_test, y_test
X_test = test_dataset[:, [*range(0, WIN), *range(WIN+1, WIN+WIN+1)]]
y_test = onehot(test_dataset[:, WIN], nc=len(vocab))
def create_mnist_network():
@@ -44,13 +64,13 @@ def create_mnist_network():
return model
def create_cbow_network(win, embed):
def create_cbow_network():
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
ctxt = tf.keras.layers.Input(shape=[2*win])
ed = tf.keras.layers.Embedding(len(vocab), embed, input_length=2*win)(ctxt)
ctxt = tf.keras.layers.Input(shape=[2*WIN])
ed = tf.keras.layers.Embedding(len(vocab), EMB, input_length=2*WIN)(ctxt)
cbow = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))(ed)
blowup = tf.keras.layers.Dense(len(vocab), activation='softmax')(cbow)
mod = tf.keras.Model(inputs=ctxt, outputs=blowup)
@@ -61,9 +81,15 @@ def create_cbow_network(win, embed):
return mod
def eval_network(net):
if X_test is None or y_test is None:
create_test_dataset()
return net.evaluate(X_test, y_test, verbose=False)
def token_generator(filename):
with open(filename) as f:
for i, l in enumerate(f.readlines()):
for l in f:
if not l.isspace():
tok = word_tokenize(l)
if tok: