mainly faster startup thanks to 'lazy' loading

This commit is contained in:
2019-12-12 20:02:03 -08:00
parent d954a9832b
commit 966bbc904c
4 changed files with 35 additions and 28 deletions

View File

@@ -1,11 +1,6 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
from mynet import onehot
@@ -27,6 +22,7 @@ def word_tokenize(s: str):
def create_test_dataset(win):
import numpy as np
test_dataset = np.vectorize(vocab.get)(np.genfromtxt(TEST, dtype=str))
assert test_dataset.shape[1] == 2*win + 1
X_test = test_dataset[:, [*range(0, win), *range(win+1, win+win+1)]]
@@ -35,6 +31,10 @@ def create_test_dataset(win):
def create_mnist_network():
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
@@ -45,6 +45,10 @@ def create_mnist_network():
def create_cbow_network(win, embed):
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
ctxt = tf.keras.layers.Input(shape=[2*win])
ed = tf.keras.layers.Embedding(len(vocab), embed, input_length=2*win)(ctxt)
cbow = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))(ed)