implemented some kind of dispatching

This commit is contained in:
2019-12-01 17:49:09 -08:00
parent bc6d34e253
commit b2a4681fb2
2 changed files with 67 additions and 65 deletions

119
main.c
View File

@@ -14,13 +14,14 @@
#define TAG_STLEN 6
#define TAG_SWORD 7
#define TAG_IWORD 8
#define TAG_INSTR 9
#define COMM 10
#define ITER 100
#define COMM 50
#define ITER 50
#define BS 32
#define EMB 20
#define WIN 2
#define FSPC 1
#define FLPC 0.8
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
// I am honestly VERY sorry for this but power corrupts even the best of us
@@ -29,15 +30,17 @@
do { fprintf(stderr, fmt, __VA_ARGS__); } while(0)
#define INFO_PRINTLN(what) \
do { fprintf(stderr, "%s\n", what); } while(0)
#define INFO_PRINT(what) \
do { fprintf(stderr, "%s", what); } while(0)
// char_stream -> tokenize -> word_strem -> filter + batch -> slave network
int g_argc = 1;
typedef enum{
TOKENIZER,
FILTERER,
BATCHER,
LEARNER,
MASTER
DISPATCHER
} Role;
int world_size() {
@@ -55,7 +58,11 @@ int my_mpi_id() {
size_t number_of(Role what) {
switch (what) {
case TOKENIZER:
return 1;
if (g_argc < 2) {
INFO_PRINTLN("NOT ENOUGH INPUTS!");
exit(1);
}
return g_argc - 1;
case FILTERER:
return 1;
case BATCHER:
@@ -65,10 +72,9 @@ size_t number_of(Role what) {
- number_of(TOKENIZER)
- number_of(FILTERER)
- number_of(BATCHER)
- number_of(MASTER);
case MASTER:
return 0;
#warning "set to real number of masters!"
- number_of(DISPATCHER);
case DISPATCHER:
return 1;
}
}
@@ -93,10 +99,11 @@ int role_id_from_mpi_id(Role role, int mid) {
Role map_node() {
int node = my_mpi_id();
size_t base = 0;
for (Role r = TOKENIZER; r <= MASTER; r++) {
for (Role r = TOKENIZER; r <= DISPATCHER; r++) {
if (node < number_of(r) + base) return r;
base += number_of(r);
}
INFO_PRINTF("Something went wrong for node %d\n", node);
exit(1); // this is bad
}
@@ -121,8 +128,9 @@ void send_word(Word* w, int dest) {
MPI_Send(w->data, len + 1, MPI_CHAR, dest, TAG_SWORD, MPI_COMM_WORLD);
}
void recv_word(Word* w, int src) {
int recv_word(Word* w, int src) {
long len;
MPI_Status stat;
MPI_Recv(&len, 1, MPI_LONG, src, TAG_STLEN, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (w->mem < len + 1) {
@@ -130,7 +138,8 @@ void recv_word(Word* w, int src) {
w->data = realloc(w->data, sizeof(char) * w->mem);
}
MPI_Recv(w->data, len + 1, MPI_CHAR, src, TAG_SWORD, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
&stat);
return stat.MPI_SOURCE;
}
void tokenizer(const char* source) {
@@ -170,8 +179,6 @@ void filterer() {
}
void batcher() {
// Reads some data and converts it to a float array
// INFO_PRINTF("Starting batcher %d\n", getpid());
int s = 0;
const size_t entry_size = 2 * WIN + 1;
const size_t bufsize = BS * entry_size;
@@ -189,10 +196,11 @@ void batcher() {
}
}
if (l_wid[0] == -1) break;
INFO_PRINT(".");
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
MPI_Send(batch, bufsize, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
INFO_PRINTLN("!");
}
free(l_wid);
free(batch);
@@ -206,7 +214,7 @@ void free_weightlist(WeightList* wl) {
free(wl->weights);
}
void send_weights(const WeightList* wl, int dest, int tag) {
void send_weights(const WeightList* wl, int dest) {
// This assumes that the receiving end knows exactly
// the number of elements being sent and has memory ready
// for it.
@@ -215,11 +223,12 @@ void send_weights(const WeightList* wl, int dest, int tag) {
for in_range(k, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[k];
}
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest,
TAG_WEIGH, MPI_COMM_WORLD);
}
}
void recv_weights(WeightList* wl, int src, int tag) {
void recv_weights(WeightList* wl, int src) {
// This assumes that the sender sends stuff that is going
// to fit into memory in correct order too.
for in_range(i, wl->n_weights) {
@@ -227,17 +236,12 @@ void recv_weights(WeightList* wl, int src, int tag) {
for in_range(d, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[d];
}
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src,
TAG_WEIGH, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
void learner() {
// 0. Announce readiness?
// 1. Receive weights from master ([ ] has to know its master)
// 2. Request batch from reader ([ ] has to choose a reader)
// 3. Do computations
// 4. Send weights back to master
INFO_PRINTF("Starting slave %d\n", getpid());
int me = my_mpi_id();
@@ -251,6 +255,8 @@ void learner() {
float* batch = malloc(bufsize * sizeof(float));
for in_range(i, COMM) {
recv_weights(&wl, mpi_id_from_role_id(DISPATCHER, 0));
set_net_weights(net, &wl);
for in_range(k, ITER) {
MPI_Send(&me, 1, MPI_INT, mpi_id_from_role_id(BATCHER, 0),
TAG_READY, MPI_COMM_WORLD);
@@ -259,61 +265,50 @@ void learner() {
MPI_STATUS_IGNORE);
step_net(net, batch, BS);
}
printf("%d net: %f\n", my_mpi_id(), eval_net(net));
// printf("%d net: %f\n", my_mpi_id(), eval_net(net));
update_weightlist(&wl, net);
send_weights(&wl, mpi_id_from_role_id(DISPATCHER, 0));
}
Py_DECREF(net);
free_weightlist(&wl);
free(batch);
}
void master_node() {
// 0. Initialize model
// 1. Send it to some slaves for processing (synchronous)
// 2. Receive weights back (synchronous)
// 3. Average the weights
void dispatcher() {
PyObject* frank = create_network(WIN, EMB);
create_test_dataset(WIN);
WeightList wl;
init_weightlist_like(&wl, frank);
update_weightlist(&wl, frank);
int spr = number_of(LEARNER) * FSPC; // Slaves per round
int s;
int lpr = number_of(LEARNER) * FLPC; // Learners per round
WeightList *wls = malloc(sizeof(WeightList) * spr);
int *handles = malloc(sizeof(int) * spr);
WeightList *wls = malloc(sizeof(WeightList) * lpr);
int *round = malloc(sizeof(int) * lpr);
for in_range(i, spr) {
for in_range(i, lpr) {
init_weightlist_like(wls + i, frank);
}
for in_range(i, COMM) {
randidx(round, number_of(LEARNER), lpr);
for in_range(k, spr) {
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
send_weights(&wl, s, TAG_WEIGH);
handles[k] = s;
for in_range(k, lpr) {
// INFO_PRINTF(" %5d", round[k]);
send_weights(&wl, mpi_id_from_role_id(LEARNER, round[k]));
}
for in_range(k, spr) {
recv_weights(wls + k, handles[k], TAG_WEIGH);
// INFO_PRINTLN("");
for in_range(k, lpr) {
recv_weights(wls + k, mpi_id_from_role_id(LEARNER, round[k]));
}
combo_weights(&wl, wls, spr);
combo_weights(&wl, wls, lpr);
set_net_weights(frank, &wl);
printf("Frank: %f\n", eval_net(frank));
// printf("Frank: %f\n", eval_net(frank));
}
Py_DECREF(frank);
free_weightlist(&wl);
for in_range(i, spr) free_weightlist(wls + i);
for in_range(i, lpr) free_weightlist(wls + i);
free(wls);
// if (role_id_from_mpi_id(my_mpi_id(), MASTER) == 0) {
// for in_range(r, number_of(BATCHER)) {
// int stop = -1;
// MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
// MPI_COMM_WORLD);
// }
// }
free(round);
}
int main (int argc, const char **argv) {
@@ -326,9 +321,12 @@ int main (int argc, const char **argv) {
PyObject* bridge_module = PyImport_ImportModule("bridge");
// Actual Code
int role_id;
g_argc = argc;
switch (map_node()) {
case TOKENIZER:
tokenizer(argv[1]);
role_id = role_id_from_mpi_id(TOKENIZER, my_mpi_id());
tokenizer(argv[role_id + 1]);
break;
case FILTERER:
filterer();
@@ -339,10 +337,11 @@ int main (int argc, const char **argv) {
case LEARNER:
learner();
break;
case DISPATCHER:
dispatcher();
break;
default:
INFO_PRINTLN("DYING HORRIBLY!");
// case SLAVE: slave_node(); break;
// case MASTER: master_node(); break;
}
// Finalizing Boilerplate