Files
fedavg_mpi/main.c

298 lines
7.5 KiB
C

#include "cythoned/library.h"
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#define TAG_IDGAF 0
#define TAG_BATCH 1
#define TAG_NETWK 2
#define TAG_WEIGH 3
#define TAG_READY 4
#define TAG_BREAK 5
#define COMM 100
#define ITER 20
#define BS 50
#define FSPC 1
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
// I am honestly VERY sorry for this but power corrupts even the best of us
#define INFO_PRINTF(fmt, ...) \
do { fprintf(stderr, fmt, __VA_ARGS__); } while(0)
#define INFO_PRINTLN(what) \
do { fprintf(stderr, "%s\n", what); } while(0)
typedef enum{
DATA,
SLAVE,
MASTER
} Role;
typedef struct IntQueue IntQueue;
struct IntQueue {
int head;
int tail;
size_t size;
int* data;
};
void queue_from_size(IntQueue* q, size_t s) {
q->data = malloc(s * sizeof(int));
q->size = s+1;
q->head = 0;
q->tail = 0;
}
void push_queue(IntQueue *q, int d) {
// Assuming queue is not full
q->data[q->tail] = d;
q->tail = (q->tail + 1) % q->size;
}
int pop_queue(IntQueue *q) {
int d = q->data[q->head];
q->head = (q->head + 1) % q->size;
return d;
}
int queue_empty(IntQueue *q) {
return q->head == q->tail;
}
int queue_full(IntQueue *q) {
return ((q->tail + 1) % q->size) == q->head;
}
int number_of_nodes() {
int n;
MPI_Comm_size(MPI_COMM_WORLD, &n);
return n;
}
int number_of_masters() {
return 1;
}
int number_of_readers() {
return 1;
}
int number_of_slaves() {
return number_of_nodes() - number_of_masters() - number_of_readers();
}
int my_id() {
int i;
MPI_Comm_rank(MPI_COMM_WORLD, &i);
return i;
}
int master_id(int m) {
return m;
}
int reader_id(int r) {
return r + number_of_masters();
}
int slave_id(int s) {
return s + number_of_masters() + number_of_readers();
}
Role map_node() {
int node;
MPI_Comm_rank(MPI_COMM_WORLD, &node);
if (node >= reader_id(0) && node <= reader_id(number_of_readers()-1)) {
return DATA;
}
if (node >= master_id(0) && node <= master_id(number_of_masters()-1)) {
return MASTER;
}
if (node >= slave_id(0) && node <= slave_id(number_of_slaves()-1)) {
return SLAVE;
}
exit(1); // this is bad
}
int rid(int id, Role what) {
int z;
switch (what) {
case DATA: z = reader_id(0); break;
case SLAVE: z = slave_id(0); break;
case MASTER: z = master_id(0); break;
}
return id - z;
}
void free_weightlist(WeightList* wl) {
for in_range(i, wl->n_weights) {
free(wl->weights[i].shape);
free(wl->weights[i].W);
}
free(wl->weights);
}
void data_reader() {
// Reads some data and converts it to a float array
INFO_PRINTF("Starting reader %d\n", getpid());
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
int s = 0;
while (s != -1) {
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (s != -1) {
mnist_batch(X, y, BS, rid(s, SLAVE), number_of_slaves());
MPI_Send(X, X_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
MPI_Send(y, y_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
}
}
free(X);
free(y);
}
void send_weights(const WeightList* wl, int dest, int tag) {
// This assumes that the receiving end knows exactly
// the number of elements being sent and has memory ready
// for it.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(k, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[k];
}
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);
}
}
void recv_weights(WeightList* wl, int src, int tag) {
// This assumes that the sender sends stuff that is going
// to fit into memory in correct order too.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(d, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[d];
}
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
}
void slave_node() {
// 0. Announce readiness?
// 1. Receive weights from master ([ ] has to know its master)
// 2. Request batch from reader ([ ] has to choose a reader)
// 3. Do computations
// 4. Send weights back to master
INFO_PRINTF("Starting slave %d\n", getpid());
int me;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
PyObject* net = create_network();
WeightList wl;
init_weightlist_like(&wl, net);
for in_range(i, COMM) {
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
recv_weights(&wl, master_id(0), TAG_WEIGH);
set_net_weights(net, &wl);
for in_range(k, ITER) {
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
MPI_Recv(X, X_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(y, y_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
step_net(net, X, y, BS);
}
printf("%d net: %f\n", my_id(), eval_net(net));
update_weightlist(&wl, net);
send_weights(&wl, master_id(0), TAG_WEIGH);
}
Py_DECREF(net);
free_weightlist(&wl);
}
void master_node() {
// 0. Initialize model
// 1. Send it to some slaves for processing (synchronous)
// 2. Receive weights back (synchronous)
// 3. Average the weights
PyObject* frank = create_network();
WeightList wl;
init_weightlist_like(&wl, frank);
update_weightlist(&wl, frank);
int spr = number_of_slaves() * FSPC; // Slaves per round
int s;
WeightList *wls = malloc(sizeof(WeightList) * spr);
int *handles = malloc(sizeof(int) * spr);
for in_range(i, spr) {
init_weightlist_like(wls + i, frank);
}
for in_range(i, COMM) {
for in_range(k, spr) {
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
send_weights(&wl, s, TAG_WEIGH);
handles[k] = s;
}
for in_range(k, spr) {
recv_weights(wls + k, handles[k], TAG_WEIGH);
}
combo_weights(&wl, wls, spr);
set_net_weights(frank, &wl);
printf("Frank: %f\n", eval_net(frank));
}
Py_DECREF(frank);
free_weightlist(&wl);
for in_range(i, spr) free_weightlist(wls + i);
free(wls);
if (rid(my_id(), MASTER) == 0) {
for in_range(r, number_of_readers()) {
int stop = -1;
MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
MPI_COMM_WORLD);
}
}
}
int main (int argc, const char **argv) {
MPI_Init(NULL, NULL);
// Cython Boilerplate
PyImport_AppendInittab("library", PyInit_library);
Py_Initialize();
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
PyObject* library_module = PyImport_ImportModule("library");
// Actual Code
switch (map_node()) {
case DATA: data_reader(); break;
case SLAVE: slave_node(); break;
case MASTER: master_node(); break;
}
// Finalizing Boilerplate
Py_DECREF(library_module);
Py_Finalize();
MPI_Finalize();
}