Files
fedavg_mpi/library.py

132 lines
3.2 KiB
Python

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import json
import warnings
warnings.simplefilter('ignore', category=FutureWarning)
WIN = 2
EMB = 32
HERE = os.path.abspath(os.path.dirname(__file__))
CONFIG = os.path.join(HERE, 'config')
RESULTS = os.path.join(HERE, 'trained')
CORPUS = os.path.join(CONFIG, 'corpus.txt')
VOCAB = os.path.join(CONFIG, 'vocab.txt')
TEST = os.path.join(CONFIG, 'test.txt')
if not os.path.exists(RESULTS):
os.mkdir(RESULTS)
def read_cfg():
with open(os.path.join(CONFIG, 'cfg.json'), encoding='utf-8') as f:
return json.load(f)
CFG = read_cfg()
def read_vocab_list():
with open(VOCAB, encoding='utf-8') as f:
return f.read().split()
inv_vocab = read_vocab_list()
vocab = {w: i for i, w in enumerate(inv_vocab)}
X_test = None
y_test = None
def word_tokenize(s: str):
l = ''.join(c.lower() if c.isalpha() else ' ' for c in s)
return l.split()
def onehot(a, nc=10):
import numpy as np
oh = np.zeros((len(a), nc), dtype=np.float32)
oh[np.arange(len(a)), a.flatten().astype(np.int)] = 1
return oh
def create_test_dataset():
import numpy as np
test_dataset = np.vectorize(vocab.get)(np.genfromtxt(TEST, dtype=str))
assert test_dataset.shape[1] == 2*WIN + 1
global X_test, y_test
X_test = test_dataset[:, [*range(0, WIN), *range(WIN+1, WIN+WIN+1)]]
y_test = onehot(test_dataset[:, WIN], nc=len(vocab))
def create_mnist_network():
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
return model
def create_cbow_network():
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
tf.random.set_random_seed(42)
ctxt = tf.keras.layers.Input(shape=[2*WIN])
ed = tf.keras.layers.Embedding(len(vocab), EMB, input_length=2*WIN)(ctxt)
cbow = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))(ed)
blowup = tf.keras.layers.Dense(len(vocab), activation='softmax')(cbow)
mod = tf.keras.Model(inputs=ctxt, outputs=blowup)
mod.compile(
optimizer='adam',
loss='categorical_crossentropy',
)
return mod
def eval_network(net):
if X_test is None or y_test is None:
create_test_dataset()
return net.evaluate(X_test, y_test, verbose=False)
def token_generator(filename):
with open(filename, encoding='utf-8') as f:
for l in f:
if not l.isspace():
tok = word_tokenize(l)
if tok:
yield tok
def get_embeddings(net):
return net.get_weights()[0]
def calc_TSNE(emb):
# import umap
# return umap.UMAP().fit_transform(emb)
return emb
def save_embeddings(emb):
import numpy as np
np.savetxt(os.path.join(RESULTS, f'embeddings_{CFG["data_name"]}.csv'),
emb)
def ckpt_network(net):
net.save_weights(os.path.join(RESULTS,
f'model_ckpt_{CFG["data_name"]}.h5'))