Files
fedavg_mpi/main.c

506 lines
14 KiB
C

#include "build/bridge.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <mpi.h>
#define TAG_IDGAF 0
#define TAG_BATCH 1
#define TAG_NETWK 2
#define TAG_WEIGH 3
#define TAG_READY 4
#define TAG_BREAK 5
#define TAG_STLEN 6
#define TAG_SWORD 7
#define TAG_IWIND 8
#define TAG_INSTR 9
#define TAG_TERMT 10
#define in_range(i, x) (size_t i = 0; i < (x); i++)
// I am honestly VERY sorry for this
// but the power of macros corrupts even the best of us
#define INFO_PRINTF(fmt, ...) \
do { fprintf(stderr, fmt, __VA_ARGS__); } while(0)
#define INFO_PRINTLN(what) \
do { fprintf(stderr, "%s\n", what); } while(0)
#define INFO_PRINT(what) \
do { fprintf(stderr, "%s", what); } while(0)
int g_argc; // sorry!
typedef enum {
TOKENIZER,
FILTERER,
BATCHER,
LEARNER,
VISUALIZER,
DISPATCHER
} Role;
int world_size() {
int n;
MPI_Comm_size(MPI_COMM_WORLD, &n);
return n;
}
int my_mpi_id() {
int i;
MPI_Comm_rank(MPI_COMM_WORLD, &i);
return i;
}
size_t number_of(Role what) {
switch (what) {
case TOKENIZER:
return g_argc - 1;
case FILTERER:
return number_of(TOKENIZER);
case BATCHER:
return number_of(TOKENIZER);
case LEARNER:
return world_size()
- number_of(TOKENIZER)
- number_of(FILTERER)
- number_of(BATCHER)
- number_of(DISPATCHER)
- number_of(VISUALIZER);
case VISUALIZER:
return 1;
case DISPATCHER:
return 1;
}
}
int mpi_id_from_role_id(Role role, int rid) {
if (rid >= number_of(role) || rid < 0) {
INFO_PRINTF("There aren't %d of %d (but %lu)\n",
rid, role, number_of(role));
MPI_Abort(MPI_COMM_WORLD, 1);
}
int base = 0;
for (Role r = TOKENIZER; r < role; r++) {
base += number_of(r);
}
return rid + base;
}
int role_id_from_mpi_id(Role role, int mid) {
int z = mpi_id_from_role_id(role, 0);
int rid = mid - z;
if (rid >= number_of(role) || rid < 0) {
INFO_PRINTF("%d is not a %d\n", mid, role);
MPI_Abort(MPI_COMM_WORLD, 1);
}
return rid;
}
int my_role_id(Role role) {
return role_id_from_mpi_id(role, my_mpi_id());
}
Role map_node() {
int node = my_mpi_id();
size_t base = 0;
for (Role r = TOKENIZER; r <= DISPATCHER; r++) {
if (node < number_of(r) + base) return r;
base += number_of(r);
}
INFO_PRINTF("Something went wrong for node %d\n", node);
MPI_Abort(MPI_COMM_WORLD, 1); // this is bad
return -1; // Not going to happen anyway (i hope)
}
void announce_ready(int dest) {
int me = my_mpi_id();
MPI_Send(&me, 1, MPI_INT, dest, TAG_READY, MPI_COMM_WORLD);
}
int wait_for_ready() {
int ready;
MPI_Recv(&ready, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
return ready;
}
void free_word(Word* w) {
free(w->data);
w->data = NULL;
w->mem = 0;
}
void free_wordlist(WordList* wl) {
for in_range(i, wl->mem) {
free_word(wl->words + i);
}
free(wl->words);
wl->words = NULL;
wl->n_words = 0;
}
void send_word(Word* w, int dest) {
long len = strlen(w->data);
MPI_Send(&len, 1, MPI_LONG, dest, TAG_STLEN, MPI_COMM_WORLD);
MPI_Send(w->data, len + 1, MPI_CHAR, dest, TAG_SWORD, MPI_COMM_WORLD);
}
void ssend_word(Word* w, int dest) {
long len = strlen(w->data);
MPI_Ssend(&len, 1, MPI_LONG, dest, TAG_STLEN, MPI_COMM_WORLD);
MPI_Ssend(w->data, len + 1, MPI_CHAR, dest, TAG_SWORD, MPI_COMM_WORLD);
}
void recv_word(Word* w, int src) {
long len;
MPI_Recv(&len, 1, MPI_LONG, src, TAG_STLEN, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (w->mem < len + 1) {
w->mem = len + 1;
w->data = realloc(w->data, sizeof(char) * w->mem);
}
MPI_Recv(w->data, len + 1, MPI_CHAR, src, TAG_SWORD, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
void send_window(long* window, size_t winsize, int dest) {
MPI_Send(window, winsize, MPI_LONG, dest, TAG_IWIND, MPI_COMM_WORLD);
}
void recv_window(long* window, size_t winsize, int src) {
MPI_Recv(window, winsize, MPI_LONG, src, TAG_IWIND, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
void tokenizer(const char* source) {
INFO_PRINTF("Starting tokenizer %d\n", getpid());
int rid = my_role_id(TOKENIZER);
int next = mpi_id_from_role_id(FILTERER, rid);
WordList wl = {0, 0, NULL};
size_t sync_ctr = 0;
Word terminator = {1, ""};
MPI_Request stop_req;
int stop;
MPI_Irecv(&stop, 1, MPI_INT, MPI_ANY_SOURCE, TAG_TERMT, MPI_COMM_WORLD,
&stop_req);
MPI_Test(&stop_req, &stop, MPI_STATUS_IGNORE);
while (!stop && get_tokens(&wl, source)) {
for in_range(i, wl.n_words) {
if (sync_ctr == 10000) {
ssend_word(&wl.words[i], next);
sync_ctr = 0;
} else {
if (rand() % 100) {
// drop a word here and there
// probably would make sense if there was less data
send_word(&wl.words[i], next);
}
}
sync_ctr++;
}
MPI_Test(&stop_req, &stop, MPI_STATUS_IGNORE);
}
free_wordlist(&wl);
send_word(&terminator, next);
INFO_PRINTF("Finishing tokenizer %d\n", getpid());
}
void filterer() {
INFO_PRINTF("Starting filterer %d\n", getpid());
int rid = my_role_id(FILTERER);
int tokenizer = mpi_id_from_role_id(TOKENIZER, rid);
int batcher = mpi_id_from_role_id(BATCHER, rid);
Word w = {0, NULL};
const size_t window_size = 2 * getwin() + 1;
long* window = malloc(window_size * sizeof(long));
size_t have = 0;
while (1) {
while (have != window_size) {
recv_word(&w, tokenizer);
if (!strlen(w.data)) break;
window[have] = vocab_idx_of(&w);
if (window[have] != -1) have++;
}
if (!strlen(w.data)) break;
have = 0;
send_window(window, window_size, batcher);
}
window[0] = -1;
send_window(window, window_size, batcher);
free_word(&w);
free(window);
INFO_PRINTF("Finishing filterer %d\n", getpid());
}
void batcher() {
INFO_PRINTF("Starting batcher %d\n", getpid());
int rid = my_role_id(BATCHER);
int tokenizer = mpi_id_from_role_id(FILTERER, rid);
int bs = getbs();
int learner_mpi_id = 0;
const size_t window_size = 2 * getwin() + 1;
const size_t bufsize = bs * window_size;
float* batch = malloc(bufsize * sizeof(float));
long* l_wid = malloc(window_size * sizeof(long));
while (1) {
for in_range(r, bs) {
recv_window(l_wid, window_size, tokenizer);
if (l_wid[0] == -1) break;
for in_range(c, window_size) {
batch[r*window_size + c] = (float)l_wid[c];
}
}
if (l_wid[0] == -1) break;
MPI_Recv(&learner_mpi_id, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (learner_mpi_id == -1) break;
MPI_Send(batch, bufsize, MPI_FLOAT, learner_mpi_id, TAG_BATCH,
MPI_COMM_WORLD);
printf("!\n");
}
free(l_wid);
free(batch);
INFO_PRINTF("Finishing batcher %d\n", getpid());
}
void free_weightlist(WeightList* wl) {
for in_range(i, wl->n_weights) {
free(wl->weights[i].shape);
free(wl->weights[i].W);
}
free(wl->weights);
}
void send_weights(const WeightList* wl, int dest) {
// This assumes that the receiving end knows exactly
// the number of elements being sent and has memory ready
// for it.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(k, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[k];
}
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest,
TAG_WEIGH, MPI_COMM_WORLD);
}
}
void recv_weights(WeightList* wl, int src) {
// This assumes that the sender sends stuff that is going
// to fit into memory in correct order too.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(d, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[d];
}
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src,
TAG_WEIGH, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
void learner() {
INFO_PRINTF("Starting learner %d\n", getpid());
int me = my_mpi_id();
int rid = role_id_from_mpi_id(LEARNER, me);
int my_batcher_rid = rid % number_of(BATCHER);
int batcher = mpi_id_from_role_id(BATCHER, my_batcher_rid);
int dispatcher = mpi_id_from_role_id(DISPATCHER, 0);
INFO_PRINTF("Learner %d (pid %d) is assigned to pipeline %d\n", rid,
getpid(), my_batcher_rid);
size_t bs = getbs();
size_t bpe = getbpe();
PyObject* net = create_network();
WeightList wl;
init_weightlist_like(&wl, net);
size_t window_size = 2 * getwin() + 1;
size_t bufsize = bs * window_size;
float* batch = malloc(bufsize * sizeof(float));
int go;
MPI_Recv(&go, 1, MPI_INT, dispatcher, TAG_INSTR, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
while (go != -1) {
recv_weights(&wl, dispatcher);
set_net_weights(net, &wl);
for in_range(k, bpe) {
MPI_Send(&me, 1, MPI_INT, batcher, TAG_READY, MPI_COMM_WORLD);
MPI_Recv(batch, bufsize, MPI_FLOAT, batcher, TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
step_net(net, batch, bs);
}
update_weightlist(&wl, net);
send_weights(&wl, dispatcher);
MPI_Recv(&go, 1, MPI_INT, dispatcher, TAG_INSTR, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
MPI_Send(&go, 1, MPI_INT, batcher, TAG_READY, MPI_COMM_WORLD);
Py_DECREF(net);
free_weightlist(&wl);
free(batch);
INFO_PRINTF("Finishing learner %d\n", getpid());
}
void dispatcher() {
INFO_PRINTF("Starting dispatcher %d\n", getpid());
int go = 1;
size_t bs = getbs();
size_t bpe = getbpe();
float target = gettarget();
PyObject* frank = create_network();
WeightList wl;
init_weightlist_like(&wl, frank);
update_weightlist(&wl, frank);
int lpr = number_of(LEARNER);
WeightList *wls = malloc(sizeof(WeightList) * lpr);
for in_range(i, lpr) {
init_weightlist_like(wls + i, frank);
}
int *round = malloc(sizeof(int) * lpr);
float first_loss = eval_net(frank);
float crt_loss = first_loss;
float min_loss = crt_loss;
time_t start = time(NULL);
size_t rounds = 0;
while (crt_loss > target) {
randidx(round, number_of(LEARNER), lpr);
for in_range(k, lpr) {
// Instruct learners to learn
int lrnr_mpi_id = mpi_id_from_role_id(LEARNER, round[k]);
MPI_Send(&go, 1, MPI_INT, lrnr_mpi_id, TAG_INSTR, MPI_COMM_WORLD);
send_weights(&wl, lrnr_mpi_id);
}
for in_range(k, lpr) {
// Collect the results
recv_weights(wls + k, mpi_id_from_role_id(LEARNER, round[k]));
}
combo_weights(&wl, wls, lpr);
set_net_weights(frank, &wl);
crt_loss = eval_net(frank);
min_loss = crt_loss < min_loss ? crt_loss : min_loss;
INFO_PRINTF("Round %ld, validation loss %f\n", rounds, crt_loss);
ckpt_net(frank);
rounds++;
}
time_t finish = time(NULL);
go = -1;
for in_range(t, number_of(TOKENIZER)) {
MPI_Send(&go, 1, MPI_INT, mpi_id_from_role_id(TOKENIZER, t),
TAG_TERMT, MPI_COMM_WORLD);
}
for in_range(l, number_of(LEARNER)) {
MPI_Send(&go, 1, MPI_INT, mpi_id_from_role_id(LEARNER, l),
TAG_INSTR, MPI_COMM_WORLD);
}
save_emb(frank);
float delta_t = finish - start;
float delta_l = first_loss - crt_loss;
INFO_PRINTF(
"Moby MPI adam consecutive_batch "
"W%lu E%lu BS%lu bpe%lu LPR%d pp%lu,"
"%f,%f,%f,%f,"
"%lu,%.0f,%lu\n",
getwin(), getemb(), bs, bpe, lpr, number_of(TOKENIZER),
delta_l/rounds, delta_l/delta_t, min_loss, target,
rounds, delta_t,bs*bpe*rounds
);
Py_DECREF(frank);
free_weightlist(&wl);
for in_range(i, lpr) free_weightlist(wls + i);
free(wls);
free(round);
INFO_PRINTF("Finishing dispatcher %d\n", getpid());
}
void visualizer() {
INFO_PRINTF("Starting visualizer %d\n", getpid());
serve();
}
int main (int argc, const char **argv) {
MPI_Init(NULL, NULL);
if (my_mpi_id() == 0) {
if (argc < 2) {
INFO_PRINTLN("NOT ENOUGH INPUTS!");
MPI_Abort(MPI_COMM_WORLD, 1);
}
int pipelines = argc - 1;
int min_nodes = 4 * pipelines + 2;
if (world_size() < min_nodes) {
INFO_PRINTF("You requested %d pipeline(s) "
"but only provided %d procs "
"(%d required)\n",
pipelines, world_size(), min_nodes);
MPI_Abort(MPI_COMM_WORLD, 1);
}
}
g_argc = argc;
// Cython Boilerplate
PyImport_AppendInittab("bridge", PyInit_bridge);
Py_Initialize();
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
PyObject* bridge_module = PyImport_ImportModule("bridge");
// Actual Code
int role_id;
switch (map_node()) {
case TOKENIZER:
role_id = role_id_from_mpi_id(TOKENIZER, my_mpi_id());
tokenizer(argv[role_id + 1]);
break;
case FILTERER:
filterer();
break;
case BATCHER:
batcher();
break;
case LEARNER:
learner();
break;
case DISPATCHER:
dispatcher();
break;
case VISUALIZER:
visualizer();
break;
default:
INFO_PRINTLN("DYING HORRIBLY!");
}
// Finalizing Boilerplate
Py_DECREF(bridge_module);
Py_Finalize();
MPI_Finalize();
}