55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
import os
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
import tensorflow as tf
|
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
|
|
# from nltk.corpus import stopwords
|
|
# from nltk.tokenize import word_tokenize
|
|
from mynet import load_mnist, onehot
|
|
|
|
|
|
def word_tokenize(s: str):
|
|
l = ''.join(c.lower() if c.isalpha() else ' ' for c in s)
|
|
return l.split()
|
|
|
|
|
|
HERE = os.path.abspath(os.path.dirname(__file__))
|
|
CORPUS = os.path.join(HERE, 'melville-moby_dick.txt')
|
|
# sw = set(stopwords.words('english'))
|
|
sw = ['the']
|
|
vocab = list(set(
|
|
w.lower() for w in word_tokenize(open(CORPUS).read())
|
|
if w.isalpha() and not w.lower() in sw
|
|
))
|
|
|
|
|
|
def create_mnist_network():
|
|
model = tf.keras.models.Sequential([
|
|
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
|
|
tf.keras.layers.Dense(10, activation='softmax')
|
|
])
|
|
model.compile(loss='categorical_crossentropy', optimizer='sgd',
|
|
metrics=['accuracy'])
|
|
return model
|
|
|
|
|
|
def create_cbow_network(win, vocab, embed):
|
|
ctxt = tf.keras.layers.Input(shape=[win])
|
|
ed = tf.keras.layers.Embedding(vocab, embed, input_length=win)(ctxt)
|
|
avgd = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))(ed)
|
|
mod = tf.keras.Model(inputs=ctxt, outputs=avgd)
|
|
mod.compile(
|
|
optimizer='sgd',
|
|
loss='categorical_crossentropy',
|
|
)
|
|
return mod
|
|
|
|
|
|
def token_generator(filename):
|
|
with open(filename) as f:
|
|
for l in f.readlines():
|
|
if not l.isspace():
|
|
tok = word_tokenize(l)
|
|
if tok:
|
|
yield tok
|