Files
fedavg_mpi/library.pyx
Pavel Lutskov 76f8d7dcb6 a great work has been done here
now there is no mentioning python in c code (except for the
boilerplate at the beginning, but the rest is nice clean c).
all the bridging is being done in cython (where it belongs).
and no memory leaks so there's that!
2019-11-25 22:01:39 -08:00

118 lines
2.9 KiB
Cython

cimport numpy as np
import numpy as np
import mynet as mn
from libc.stdlib cimport malloc
from libc.string cimport memcpy
ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist()
opt = mn.SGDOptimizer(lr=0.1)
cdef extern from "numpy/arrayobject.h":
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Dense:
long[2] shape
int ownmem
float* W
float* b
ctypedef public struct Network:
size_t n_layers;
Dense* layers;
cdef public char * greeting():
return f'The value is {3**3**3}'.encode('utf-8')
cdef public void debug_print(object o):
print(o)
cdef public void predict(
Network* net,
float* X,
size_t batch_size
):
pass
# try:
# return net(X)
# except Exception as e:
# print(e)
cdef public void step_net(
Network* c_net,
float* batch_data,
size_t batch_size
):
net = wrap_c_network(c_net)
cdef size_t in_dim = net.geometry[0]
cdef size_t out_dim = net.geometry[-1]
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
cdef public float eval_net(Network* c_net):
net = wrap_c_network(c_net)
return net.evaluate(X_test, y_test, 'cls')
cdef public void mnist_batch(float* batch, size_t bs):
idx = np.random.choice(len(X_train), bs, replace=False)
arr = np.concatenate([X_train[idx], y_train[idx]], axis=1)
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
cdef public void create_c_network(Network* c_net):
net = _create_network()
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
c_net.layers[i].shape[0] = d0
c_net.layers[i].shape[1] = d1
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
c_net.layers[i].ownmem = 1
cdef public void be_like(Network* c_dst, Network* c_src):
dst = wrap_c_network(c_dst)
src = wrap_c_network(c_src)
dst.be_like(src)
cdef object wrap_c_network(Network* c_net):
net = _create_network(init=False)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
return net
cdef void inspect_array(
np.ndarray[np.float32_t, ndim=2, mode='c'] a
):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def _create_network(init=True):
return mn.Network((784, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
initialize=init)
def combo_net(nets):
return mn.combo_net(nets)