Files
fedavg_mpi/main.c
Pavel Lutskov 76f8d7dcb6 a great work has been done here
now there is no mentioning python in c code (except for the
boilerplate at the beginning, but the rest is nice clean c).
all the bridging is being done in cython (where it belongs).
and no memory leaks so there's that!
2019-11-25 22:01:39 -08:00

153 lines
4.3 KiB
C

#include <Python.h>
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include "library.h"
#define P_READER 0
#define P_SLAVE 1
#define P_MASTER 2
#define COMM 500
#define ITER 32
#define BS 32
typedef enum{
DATA,
SLAVE,
MASTER
} Role;
// Reads some data and converts it to 2D float array
void data_reader() {
size_t batch_numel = (784 + 10) * BS;
float* batch = malloc(batch_numel * sizeof(float));
while (1) {
mnist_batch(batch, BS);
MPI_Send(batch, batch_numel, MPI_FLOAT, P_SLAVE, 0, MPI_COMM_WORLD);
}
}
void send_network(const Network* c_net, int dest, int tag) {
size_t n_layers = c_net->n_layers;
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
for (size_t i = 0; i < n_layers; i++) {
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
}
}
void recv_network(Network* c_net, int src, int tag) {
// Creates a new network at c_net
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
for (size_t i = 0; i < c_net->n_layers; i++) {
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
c_net->layers[i].ownmem = 1;
c_net->layers[i].W = malloc(sizeof(float) * d0 * d1);
c_net->layers[i].b = malloc(sizeof(float) * d1);
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
void free_network_contents(Network* c_net) {
for (size_t i = 0; i < c_net->n_layers; i++) {
if (c_net->layers[i].ownmem) {
free(c_net->layers[i].b);
free(c_net->layers[i].W);
}
}
free(c_net->layers);
}
// Receives weight updates and trains, sends learned weights back to master
void slave_node() {
Network net;
create_c_network(&net);
size_t batch_numel = (784 + 10) * BS;
float* batch = malloc(batch_numel * sizeof(float));
for (int i = 0; i < COMM; i++) {
char go;
MPI_Recv(&go, 1, MPI_CHAR, P_MASTER, MPI_ANY_TAG, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
for (int k = 0; k < ITER; k++) {
MPI_Recv(batch, batch_numel, MPI_FLOAT, P_READER, MPI_ANY_TAG,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
step_net(&net, batch, BS);
}
printf("Net: %f\n", eval_net(&net));
send_network(&net, P_MASTER, 0);
}
free(batch);
free_network_contents(&net);
}
// Stores most up-to-date model, sends it to slaves for training
void master_node() {
Network frank;
create_c_network(&frank);
for (int i = 0; i < COMM; i++) {
char go;
MPI_Send(&go, 1, MPI_CHAR, P_SLAVE, 0, MPI_COMM_WORLD);
Network net;
recv_network(&net, P_SLAVE, MPI_ANY_TAG);
be_like(&frank, &net);
free_network_contents(&net);
printf("Frank: %f\n", eval_net(&frank));
}
free_network_contents(&frank);
}
Role map_node() {
int node;
MPI_Comm_rank(MPI_COMM_WORLD, &node);
if (node == 0) return DATA;
if (node == 1) return SLAVE;
if (node == 2) return MASTER;
return SLAVE;
}
int main (int argc, const char **argv) {
MPI_Init(NULL, NULL);
// Cython Boilerplate
PyImport_AppendInittab("library", PyInit_library);
Py_Initialize();
// import_array();
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
PyObject* library_module = PyImport_ImportModule("library");
// Actual Code
switch (map_node()) {
case DATA: data_reader();
break;
case SLAVE: slave_node();
break;
case MASTER: master_node();
break;
}
// Finalizing Boilerplate
Py_DECREF(library_module);
Py_Finalize();
MPI_Finalize();
}