Files
fedavg_mpi/library.pyx

73 lines
1.5 KiB
Cython

cimport numpy as np
import numpy as np
import mynet as mn
ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist()
cdef public char * greeting():
return f'The value is {3**3**3}'.encode('utf-8')
cdef public void debug_print(object o):
print(o.flags)
# print(o)
cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] dot(
np.ndarray[np.float32_t, ndim=2, mode='c'] x,
np.ndarray[np.float32_t, ndim=2, mode='c'] y
):
return x @ y
cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] predict(
object net,
np.ndarray[np.float32_t, ndim=2, mode='c'] X
):
try:
return net(X)
except Exception as e:
print(e)
cdef public object create_network():
return mn.Network((784, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy)
cdef public object combo_net(list nets):
return mn.combo_net(nets)
cdef public object make_like(object neta, object netb):
netb.be_like(neta)
cdef public void step_net(
object net,
np.ndarray[np.float32_t, ndim=2, mode='c'] batch
):
opt = mn.SGDOptimizer(lr=0.1)
net.step(batch[:, :784], batch[:, 784:], opt)
cdef public float eval_net(
object net
):
return net.evaluate(X_test, y_test, 'cls')
cdef public np.ndarray[np.float32_t, ndim=2, mode='c'] mnist_batch(
Py_ssize_t bs
):
idx = np.random.choice(len(X_train), bs, replace=False)
arr = np.concatenate([X_train[idx], y_train[idx]], axis=1)
return arr
cdef public float arrsum(
np.ndarray[np.float32_t, ndim=2, mode='c'] a
):
return np.sum(a)