239 lines
5.7 KiB
Cython
239 lines
5.7 KiB
Cython
cimport numpy as np
|
|
import numpy as np
|
|
|
|
from sys import stderr
|
|
|
|
from libc.stdlib cimport malloc, realloc
|
|
from libc.string cimport memcpy
|
|
|
|
import library as nn
|
|
import server as srv
|
|
|
|
|
|
tokenizers = {}
|
|
|
|
|
|
cdef extern from "numpy/arrayobject.h":
|
|
void *PyArray_DATA(np.ndarray arr)
|
|
|
|
|
|
ctypedef public struct Weight:
|
|
size_t dims
|
|
long* shape
|
|
float* W
|
|
|
|
|
|
ctypedef public struct WeightList:
|
|
size_t n_weights;
|
|
Weight* weights;
|
|
|
|
|
|
ctypedef public struct Word:
|
|
size_t mem
|
|
char* data
|
|
|
|
|
|
ctypedef public struct WordList:
|
|
size_t mem
|
|
size_t n_words
|
|
Word* words
|
|
|
|
|
|
cdef public char *greeting():
|
|
return f'The value is {3**3**3}'.encode('utf-8')
|
|
|
|
|
|
cdef public void serve():
|
|
srv.serve()
|
|
|
|
|
|
cdef public size_t getwin():
|
|
return nn.WIN
|
|
|
|
|
|
cdef public size_t getemb():
|
|
return nn.EMB
|
|
|
|
|
|
cdef public size_t getbs():
|
|
return nn.CFG['bs']
|
|
|
|
|
|
cdef public size_t getbpe():
|
|
return nn.CFG['bpe']
|
|
|
|
|
|
cdef public float gettarget():
|
|
return nn.CFG['target']
|
|
|
|
|
|
cdef public int get_tokens(WordList* wl, const char *filename):
|
|
fnu = filename.decode('utf-8')
|
|
if fnu not in tokenizers:
|
|
tokenizers[fnu] = nn.token_generator(fnu)
|
|
g = tokenizers[fnu]
|
|
try:
|
|
words = next(g)
|
|
except StopIteration:
|
|
eprint(f'Text {fnu} depleted, restarting...')
|
|
tokenizers[fnu] = nn.token_generator(fnu)
|
|
g = tokenizers[fnu]
|
|
words = next(g)
|
|
words_into_wordlist(wl, words)
|
|
return 1
|
|
|
|
|
|
cdef public long vocab_idx_of(Word* w):
|
|
word = w.data.decode('utf-8')
|
|
try:
|
|
return nn.vocab[word]
|
|
except KeyError:
|
|
return -1
|
|
|
|
|
|
cdef public void _dbg_idx_list_to_print(long* f_idxs, size_t num):
|
|
idxs = np.asarray(<long[:num]>f_idxs)
|
|
cdef str pyuni = ' '.join(nn.inv_vocab[i] for i in idxs)
|
|
eprint(pyuni)
|
|
|
|
|
|
cdef public void _dbg_print(object o):
|
|
eprint(o)
|
|
|
|
|
|
cdef public void _dbg_print_cbow_batch(float* batch, size_t bs):
|
|
X_np, y_np = cbow_batch(batch, bs)
|
|
eprint(X_np)
|
|
eprint(y_np)
|
|
|
|
|
|
cdef public void randidx(int* idx, size_t l, size_t how_much):
|
|
i_np = np.random.choice(l, how_much, replace=False).astype(np.intc)
|
|
memcpy(idx, PyArray_DATA(i_np), how_much * sizeof(int))
|
|
|
|
|
|
cdef public object create_network():
|
|
try:
|
|
net = nn.create_cbow_network()
|
|
return net
|
|
except Exception as e:
|
|
eprint(e)
|
|
|
|
|
|
cdef public void set_net_weights(object net, WeightList* wl):
|
|
net.set_weights(wrap_weight_list(wl))
|
|
|
|
|
|
cdef public void step_net(
|
|
object net, float* batch, size_t bs
|
|
):
|
|
X_train, y_train = cbow_batch(batch, bs)
|
|
net.train_on_batch(X_train, y_train)
|
|
|
|
|
|
cdef public size_t out_size(object net):
|
|
return np.prod(net.output_shape[1:])
|
|
|
|
|
|
cdef public float eval_net(object net):
|
|
return nn.eval_network(net)
|
|
|
|
|
|
cdef public void ckpt_net(object net):
|
|
nn.ckpt_network(net)
|
|
|
|
|
|
cdef public void save_emb(object net):
|
|
nn.save_embeddings(nn.get_embeddings(net))
|
|
|
|
|
|
cdef public void init_weightlist_like(WeightList* wl, object net):
|
|
weights = net.get_weights()
|
|
wl.n_weights = len(weights)
|
|
wl.weights = <Weight*>malloc(sizeof(Weight) * wl.n_weights)
|
|
for i, w in enumerate(weights):
|
|
sh = np.asarray(w.shape, dtype=long)
|
|
wl.weights[i].dims = sh.size
|
|
wl.weights[i].shape = <long*>malloc(sizeof(long) * sh.size)
|
|
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
|
|
|
|
assert sh.flags['C_CONTIGUOUS']
|
|
memcpy(wl.weights[i].shape, PyArray_DATA(sh), sh.size * sizeof(long))
|
|
|
|
|
|
cdef public void update_weightlist(WeightList* wl, object net):
|
|
weights = net.get_weights()
|
|
for i, w in enumerate(weights):
|
|
w = w.astype(np.float32)
|
|
|
|
assert w.flags['C_CONTIGUOUS']
|
|
memcpy(wl.weights[i].W, PyArray_DATA(w), w.size * sizeof(float))
|
|
|
|
|
|
cdef public void combo_weights(
|
|
WeightList* wl_frank, WeightList* wls, size_t num_weights
|
|
):
|
|
"""Not a one-liner anymore \_(".)_/"""
|
|
alpha = 1. / num_weights
|
|
frank = wrap_weight_list(wl_frank)
|
|
for w in frank:
|
|
w[:] = 0
|
|
for i in range(num_weights):
|
|
for wf, ww in zip(frank, wrap_weight_list(&wls[i])):
|
|
wf += alpha * ww
|
|
|
|
|
|
cdef tuple cbow_batch(float* batch, size_t bs):
|
|
win = nn.WIN
|
|
batch_np = np.asarray(<float[:bs,:2*win+1]>batch)
|
|
X_np = batch_np[:, [*range(win), *range(win+1, win+win+1)]]
|
|
y_np = nn.onehot(batch_np[:, win], nc=len(nn.vocab))
|
|
return X_np, y_np
|
|
|
|
|
|
cdef list wrap_weight_list(WeightList* wl):
|
|
"""Thinly wraps a WeightList struct into a list of NumPy arrays."""
|
|
weights = []
|
|
for i in range(wl.n_weights):
|
|
w_shape = <long[:wl.weights[i].dims]>wl.weights[i].shape
|
|
w_numel = np.prod(w_shape)
|
|
weights.append(
|
|
np.asarray(<float[:w_numel]>wl.weights[i].W).reshape(w_shape)
|
|
)
|
|
return weights
|
|
|
|
|
|
cdef void words_into_wordlist(WordList* wl, list words):
|
|
if wl.mem < len(words):
|
|
old = wl.mem
|
|
wl.mem = len(words)
|
|
wl.words = <Word*>realloc(wl.words, wl.mem * sizeof(Word))
|
|
for i in range(old, wl.mem):
|
|
wl.words[i].mem = 0
|
|
wl.words[i].data = NULL
|
|
|
|
wl.n_words = len(words)
|
|
for i, w in enumerate(words):
|
|
wenc = w.encode('utf-8')
|
|
if wl.words[i].mem < len(wenc) + 1:
|
|
wl.words[i].mem = len(wenc) + 1
|
|
wl.words[i].data = <char*>realloc(
|
|
wl.words[i].data, wl.words[i].mem * sizeof(char)
|
|
)
|
|
memcpy(wl.words[i].data, <char*>wenc, len(wenc) * sizeof(char))
|
|
wl.words[i].data[len(wenc)] = 0
|
|
|
|
|
|
def inspect_array(a):
|
|
print(a.flags, flush=True)
|
|
print(a.dtype, flush=True)
|
|
print(a.sum(), flush=True)
|
|
|
|
|
|
def ensure_contiguous(a):
|
|
assert a.flags['C_CONTIGUOUS']
|
|
|
|
|
|
def eprint(*args, **kwargs):
|
|
return print(*args, flush=True, file=stderr, **kwargs)
|