did small refactoring, probably broke a lot

This commit is contained in:
2018-06-13 22:11:58 +02:00
parent b8ccb41ba7
commit 5076f87145
3 changed files with 67 additions and 95 deletions

View File

@@ -5,9 +5,9 @@ import json
import argparse
import cv2
import numpy as np
from .imagereaders import VideoReader, NaoImageReader, PictureReader
from .finders import GoalFinder
from .utils import read_config, imresize
class Colorpicker(object):
@@ -15,7 +15,7 @@ class Colorpicker(object):
WINDOW_CAPTURE_NAME = 'Video Capture'
WINDOW_DETECTION_NAME = 'Object Detection'
def __init__(self):
def __init__(self, markers=()):
parameters = ['low_h', 'low_s', 'low_v', 'high_h', 'high_s', 'high_v']
maxes = [180, 255, 255, 180, 255, 255]
checkers = [
@@ -34,6 +34,13 @@ class Colorpicker(object):
'high_s': 255,
'high_v': 255
}
self.markers = {}
if 'goal' in markers:
self.markers['goal'] = GoalFinder(
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
)
cv2.namedWindow(self.WINDOW_CAPTURE_NAME)
cv2.namedWindow(self.WINDOW_DETECTION_NAME)
self.trackers = [
@@ -51,79 +58,37 @@ class Colorpicker(object):
def _on_trackbar(self, val, name, checker):
self.settings[name] = checker(val)
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
self.settings[name])
self._hsv_updated(name)
def goal_similarity(self, contour):
contour = contour.reshape((-1, 2))
hull = cv2.convexHull(contour).reshape((-1, 2))
len_h = cv2.arcLength(hull, True)
def _hsv_updated(self, param):
cv2.setTrackbarPos(param, self.WINDOW_DETECTION_NAME,
self.settings[param])
print(param)
for marker in self.markers:
print(self.markers[marker])
print(self.settings)
self.markers[marker].hsv_lower = tuple(
map(self.settings.get, ('low_h', 'low_s', 'low_v'))
)
self.markers[marker].hsv_upper = tuple(
map(self.settings.get, ('high_h', 'high_s', 'high_v'))
)
# Wild assumption that the goal should lie close to its
# enclosing convex hull
shape_sim = np.linalg.norm(contour[:,None] - hull,
axis=2).min(axis=1).sum() / len_h
# Wild assumption that the area of the goal is rather small
# compared to its enclosing convex hull
area_c = cv2.contourArea(contour)
area_h = cv2.contourArea(hull)
area_sim = area_c / area_h
# Final similarity score is just the sum of both
final_score = shape_sim + area_sim
print(shape_sim, area_sim, final_score)
return final_score
def draw_contours(self, thr):
# The ususal
thr = cv2.erode(thr, None, iterations=2)
thr = cv2.dilate(thr, None, iterations=2)
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
epsilon = 0.04 * perimeters
# Candidates are at most 6 biggest white areas
top_x = 6
if len(areas) > top_x:
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
cnts = [cnts[i] for i in cnt_ind]
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
epsilon = 0.01 * perimeters
# Approximate resulting contours with simpler lines
cnts = [cv2.approxPolyDP(cnt, eps, True)
for cnt, eps in zip(cnts, epsilon)]
# Goal needs normally 8 points for perfect approximation
# But with 6 can also be approximated
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
and not cv2.isContourConvex(cnt)]
if good_cnts:
# Find the contour with the shape closest to that of the goal
good_cnts = [min(good_cnts, key=self.goal_similarity)]
thr = cv2.cvtColor(thr, cv2.COLOR_GRAY2BGR)
cv2.drawContours(thr, good_cnts, -1, (0, 255, 0), 2)
return thr
def show_frame(self, frame, width=None, draw_contours=False):
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
def show_frame(self, frame, width=None):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
frame_threshold = cv2.inRange(
frame_HSV,
hsv,
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
)
frame = imresize(frame, width=width)
frame_threshold = imresize(frame_threshold, width=width)
if draw_contours:
frame_threshold = self.draw_contours(frame_threshold)
if 'goal' in self.markers:
self.markers['goal'].draw(frame)
if 'ball' in self.markers:
self.markers['ball'].draw(frame)
cv2.imshow(self.WINDOW_CAPTURE_NAME, frame)
cv2.imshow(self.WINDOW_DETECTION_NAME, frame_threshold)
@@ -143,8 +108,7 @@ class Colorpicker(object):
with open(filename) as f:
self.settings = json.load(f)
for name in self.settings:
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
self.settings[name])
self._hsv_updated(name)
if __name__ == '__main__':
@@ -186,6 +150,7 @@ if __name__ == '__main__':
parser.add_argument(
'--nao-cam',
choices=[0, 1],
type=int,
help='0 for top camera, 1 for bottom camera',
default=defaults['cam']
)
@@ -204,7 +169,7 @@ if __name__ == '__main__':
)
args = parser.parse_args()
cp = Colorpicker()
cp = Colorpicker(['goal'])
if args.input_config:
cp.load(args.input_config)
@@ -228,7 +193,7 @@ if __name__ == '__main__':
while True:
if not args.still:
frame = rdr.get_frame()
key = cp.show_frame(frame, width=args.width, draw_contours=True)
key = cp.show_frame(frame, width=args.width)
if key == ord('q') or key == 27:
break
finally:

View File

@@ -1,6 +1,11 @@
from __future__ import division
from __future__ import print_function
import json
from collections import deque
import cv2
import numpy as np
class GoalFinder(object):
@@ -11,8 +16,8 @@ class GoalFinder(object):
self.hsv_upper = hsv_upper
def goal_similarity(self, contour):
contour = contour.reshape((-1, 2))
hull = cv2.convexHull(contour).reshape((-1, 2))
contour = contour.squeeze(axis=1)
hull = cv2.convexHull(contour).squeeze(axis=1)
len_h = cv2.arcLength(hull, True)
# Wild assumption that the goal should lie close to its
@@ -32,8 +37,10 @@ class GoalFinder(object):
print(shape_sim, area_sim, final_score)
return final_score
def find_goal_contour(self, frame)
thr =
def find_goal_contour(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
print(self.hsv_lower, self.hsv_upper)
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
# The ususal
thr = cv2.erode(thr, None, iterations=2)
@@ -47,8 +54,7 @@ class GoalFinder(object):
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
cnts = [cnts[i] for i in cnt_ind]
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
epsilon = 0.01 * perimeters
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
# Approximate resulting contours with simpler lines
cnts = [cv2.approxPolyDP(cnt, eps, True)
@@ -64,10 +70,19 @@ class GoalFinder(object):
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
best = min(similarities)
if best > 0.4:
return None
# if best > 0.4:
# return None
# Find the contour with the shape closest to that of the goal
goal = good_cnts[similarities.index(best)]
return goal
def left_right_post(self, contour):
return contour[:,0].min(), contour[:,0].max()
def draw(self, frame):
goal = self.find_goal_contour(frame)
if goal is not None:
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
class BallFinder(object):
@@ -102,7 +117,6 @@ class BallFinder(object):
# only proceed if at least one contour was found
if len(cnts) == 0:
self.history.appendleft(None)
return None
# find the largest contour in the mask, then use it to compute
@@ -111,23 +125,18 @@ class BallFinder(object):
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius < self.min_radius:
self.history.appendleft(None)
return None
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
self.history.appendleft((center, int(radius)))
return center, int(radius)
def visualize(self, frame):
if not self.viz:
raise ValueError(
'Visualization needs to be enabled when initializing'
)
def draw(self, frame):
ball = self.find_colored_ball(frame)
self.history.appendleft(ball)
frame = frame.copy()
if self.history[0] is not None:
center, radius = self.history[0]
if ball is not None:
center, radius = ball
cv2.circle(frame, center, radius, (255, 255, 0), 1)
cv2.circle(frame, center, 5, (0, 255, 0), -1)
@@ -138,13 +147,10 @@ class BallFinder(object):
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
center_now = self.history[0][0]
center_prev = self.history[1][0]
center_now = self.history[i - 1][0]
center_prev = self.history[i][0]
thickness = int((64 / (i + 1))**0.5 * 2.5)
cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
# show the frame to screen
cv2.imshow("Frame", frame)
return cv2.waitKey(1)
def load_hsv_config(self, filename):
with open(filename) as f:

View File

@@ -60,7 +60,8 @@ class VideoReader(object):
def get_frame(self):
succ, frame = self.cap.read()
if not succ:
raise ValueError('Error while reading video')
raise ValueError('Error while reading video.\n' +
'Or video is over.')
self.ctr += 1
if (self.ctr == self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) and
self.loop):