did small refactoring, probably broke a lot
This commit is contained in:
@@ -5,9 +5,9 @@ import json
|
|||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from .imagereaders import VideoReader, NaoImageReader, PictureReader
|
from .imagereaders import VideoReader, NaoImageReader, PictureReader
|
||||||
|
from .finders import GoalFinder
|
||||||
from .utils import read_config, imresize
|
from .utils import read_config, imresize
|
||||||
|
|
||||||
class Colorpicker(object):
|
class Colorpicker(object):
|
||||||
@@ -15,7 +15,7 @@ class Colorpicker(object):
|
|||||||
WINDOW_CAPTURE_NAME = 'Video Capture'
|
WINDOW_CAPTURE_NAME = 'Video Capture'
|
||||||
WINDOW_DETECTION_NAME = 'Object Detection'
|
WINDOW_DETECTION_NAME = 'Object Detection'
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, markers=()):
|
||||||
parameters = ['low_h', 'low_s', 'low_v', 'high_h', 'high_s', 'high_v']
|
parameters = ['low_h', 'low_s', 'low_v', 'high_h', 'high_s', 'high_v']
|
||||||
maxes = [180, 255, 255, 180, 255, 255]
|
maxes = [180, 255, 255, 180, 255, 255]
|
||||||
checkers = [
|
checkers = [
|
||||||
@@ -34,6 +34,13 @@ class Colorpicker(object):
|
|||||||
'high_s': 255,
|
'high_s': 255,
|
||||||
'high_v': 255
|
'high_v': 255
|
||||||
}
|
}
|
||||||
|
self.markers = {}
|
||||||
|
if 'goal' in markers:
|
||||||
|
self.markers['goal'] = GoalFinder(
|
||||||
|
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
|
||||||
|
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
|
||||||
|
)
|
||||||
|
|
||||||
cv2.namedWindow(self.WINDOW_CAPTURE_NAME)
|
cv2.namedWindow(self.WINDOW_CAPTURE_NAME)
|
||||||
cv2.namedWindow(self.WINDOW_DETECTION_NAME)
|
cv2.namedWindow(self.WINDOW_DETECTION_NAME)
|
||||||
self.trackers = [
|
self.trackers = [
|
||||||
@@ -51,79 +58,37 @@ class Colorpicker(object):
|
|||||||
|
|
||||||
def _on_trackbar(self, val, name, checker):
|
def _on_trackbar(self, val, name, checker):
|
||||||
self.settings[name] = checker(val)
|
self.settings[name] = checker(val)
|
||||||
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
|
self._hsv_updated(name)
|
||||||
self.settings[name])
|
|
||||||
|
|
||||||
def goal_similarity(self, contour):
|
def _hsv_updated(self, param):
|
||||||
contour = contour.reshape((-1, 2))
|
cv2.setTrackbarPos(param, self.WINDOW_DETECTION_NAME,
|
||||||
hull = cv2.convexHull(contour).reshape((-1, 2))
|
self.settings[param])
|
||||||
len_h = cv2.arcLength(hull, True)
|
print(param)
|
||||||
|
for marker in self.markers:
|
||||||
|
print(self.markers[marker])
|
||||||
|
print(self.settings)
|
||||||
|
self.markers[marker].hsv_lower = tuple(
|
||||||
|
map(self.settings.get, ('low_h', 'low_s', 'low_v'))
|
||||||
|
)
|
||||||
|
self.markers[marker].hsv_upper = tuple(
|
||||||
|
map(self.settings.get, ('high_h', 'high_s', 'high_v'))
|
||||||
|
)
|
||||||
|
|
||||||
# Wild assumption that the goal should lie close to its
|
def show_frame(self, frame, width=None):
|
||||||
# enclosing convex hull
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||||
shape_sim = np.linalg.norm(contour[:,None] - hull,
|
|
||||||
axis=2).min(axis=1).sum() / len_h
|
|
||||||
|
|
||||||
# Wild assumption that the area of the goal is rather small
|
|
||||||
# compared to its enclosing convex hull
|
|
||||||
area_c = cv2.contourArea(contour)
|
|
||||||
area_h = cv2.contourArea(hull)
|
|
||||||
|
|
||||||
area_sim = area_c / area_h
|
|
||||||
|
|
||||||
# Final similarity score is just the sum of both
|
|
||||||
final_score = shape_sim + area_sim
|
|
||||||
print(shape_sim, area_sim, final_score)
|
|
||||||
return final_score
|
|
||||||
|
|
||||||
def draw_contours(self, thr):
|
|
||||||
# The ususal
|
|
||||||
thr = cv2.erode(thr, None, iterations=2)
|
|
||||||
thr = cv2.dilate(thr, None, iterations=2)
|
|
||||||
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
|
|
||||||
cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
|
||||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
|
||||||
epsilon = 0.04 * perimeters
|
|
||||||
|
|
||||||
# Candidates are at most 6 biggest white areas
|
|
||||||
top_x = 6
|
|
||||||
if len(areas) > top_x:
|
|
||||||
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
|
||||||
cnts = [cnts[i] for i in cnt_ind]
|
|
||||||
|
|
||||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
|
||||||
epsilon = 0.01 * perimeters
|
|
||||||
|
|
||||||
# Approximate resulting contours with simpler lines
|
|
||||||
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
|
||||||
for cnt, eps in zip(cnts, epsilon)]
|
|
||||||
|
|
||||||
# Goal needs normally 8 points for perfect approximation
|
|
||||||
# But with 6 can also be approximated
|
|
||||||
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
|
||||||
and not cv2.isContourConvex(cnt)]
|
|
||||||
|
|
||||||
if good_cnts:
|
|
||||||
# Find the contour with the shape closest to that of the goal
|
|
||||||
good_cnts = [min(good_cnts, key=self.goal_similarity)]
|
|
||||||
|
|
||||||
thr = cv2.cvtColor(thr, cv2.COLOR_GRAY2BGR)
|
|
||||||
cv2.drawContours(thr, good_cnts, -1, (0, 255, 0), 2)
|
|
||||||
return thr
|
|
||||||
|
|
||||||
def show_frame(self, frame, width=None, draw_contours=False):
|
|
||||||
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
||||||
frame_threshold = cv2.inRange(
|
frame_threshold = cv2.inRange(
|
||||||
frame_HSV,
|
hsv,
|
||||||
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
|
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
|
||||||
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
|
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
|
||||||
)
|
)
|
||||||
frame = imresize(frame, width=width)
|
frame = imresize(frame, width=width)
|
||||||
frame_threshold = imresize(frame_threshold, width=width)
|
frame_threshold = imresize(frame_threshold, width=width)
|
||||||
|
|
||||||
if draw_contours:
|
if 'goal' in self.markers:
|
||||||
frame_threshold = self.draw_contours(frame_threshold)
|
self.markers['goal'].draw(frame)
|
||||||
|
|
||||||
|
if 'ball' in self.markers:
|
||||||
|
self.markers['ball'].draw(frame)
|
||||||
|
|
||||||
cv2.imshow(self.WINDOW_CAPTURE_NAME, frame)
|
cv2.imshow(self.WINDOW_CAPTURE_NAME, frame)
|
||||||
cv2.imshow(self.WINDOW_DETECTION_NAME, frame_threshold)
|
cv2.imshow(self.WINDOW_DETECTION_NAME, frame_threshold)
|
||||||
@@ -143,8 +108,7 @@ class Colorpicker(object):
|
|||||||
with open(filename) as f:
|
with open(filename) as f:
|
||||||
self.settings = json.load(f)
|
self.settings = json.load(f)
|
||||||
for name in self.settings:
|
for name in self.settings:
|
||||||
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
|
self._hsv_updated(name)
|
||||||
self.settings[name])
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -186,6 +150,7 @@ if __name__ == '__main__':
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'--nao-cam',
|
'--nao-cam',
|
||||||
choices=[0, 1],
|
choices=[0, 1],
|
||||||
|
type=int,
|
||||||
help='0 for top camera, 1 for bottom camera',
|
help='0 for top camera, 1 for bottom camera',
|
||||||
default=defaults['cam']
|
default=defaults['cam']
|
||||||
)
|
)
|
||||||
@@ -204,7 +169,7 @@ if __name__ == '__main__':
|
|||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
cp = Colorpicker()
|
cp = Colorpicker(['goal'])
|
||||||
if args.input_config:
|
if args.input_config:
|
||||||
cp.load(args.input_config)
|
cp.load(args.input_config)
|
||||||
|
|
||||||
@@ -228,7 +193,7 @@ if __name__ == '__main__':
|
|||||||
while True:
|
while True:
|
||||||
if not args.still:
|
if not args.still:
|
||||||
frame = rdr.get_frame()
|
frame = rdr.get_frame()
|
||||||
key = cp.show_frame(frame, width=args.width, draw_contours=True)
|
key = cp.show_frame(frame, width=args.width)
|
||||||
if key == ord('q') or key == 27:
|
if key == ord('q') or key == 27:
|
||||||
break
|
break
|
||||||
finally:
|
finally:
|
||||||
|
|||||||
@@ -1,6 +1,11 @@
|
|||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
import json
|
import json
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class GoalFinder(object):
|
class GoalFinder(object):
|
||||||
@@ -11,8 +16,8 @@ class GoalFinder(object):
|
|||||||
self.hsv_upper = hsv_upper
|
self.hsv_upper = hsv_upper
|
||||||
|
|
||||||
def goal_similarity(self, contour):
|
def goal_similarity(self, contour):
|
||||||
contour = contour.reshape((-1, 2))
|
contour = contour.squeeze(axis=1)
|
||||||
hull = cv2.convexHull(contour).reshape((-1, 2))
|
hull = cv2.convexHull(contour).squeeze(axis=1)
|
||||||
len_h = cv2.arcLength(hull, True)
|
len_h = cv2.arcLength(hull, True)
|
||||||
|
|
||||||
# Wild assumption that the goal should lie close to its
|
# Wild assumption that the goal should lie close to its
|
||||||
@@ -32,8 +37,10 @@ class GoalFinder(object):
|
|||||||
print(shape_sim, area_sim, final_score)
|
print(shape_sim, area_sim, final_score)
|
||||||
return final_score
|
return final_score
|
||||||
|
|
||||||
def find_goal_contour(self, frame)
|
def find_goal_contour(self, frame):
|
||||||
thr =
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||||
|
print(self.hsv_lower, self.hsv_upper)
|
||||||
|
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
||||||
|
|
||||||
# The ususal
|
# The ususal
|
||||||
thr = cv2.erode(thr, None, iterations=2)
|
thr = cv2.erode(thr, None, iterations=2)
|
||||||
@@ -47,8 +54,7 @@ class GoalFinder(object):
|
|||||||
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
||||||
cnts = [cnts[i] for i in cnt_ind]
|
cnts = [cnts[i] for i in cnt_ind]
|
||||||
|
|
||||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
|
||||||
epsilon = 0.01 * perimeters
|
|
||||||
|
|
||||||
# Approximate resulting contours with simpler lines
|
# Approximate resulting contours with simpler lines
|
||||||
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
||||||
@@ -64,10 +70,19 @@ class GoalFinder(object):
|
|||||||
|
|
||||||
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
|
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
|
||||||
best = min(similarities)
|
best = min(similarities)
|
||||||
if best > 0.4:
|
# if best > 0.4:
|
||||||
return None
|
# return None
|
||||||
# Find the contour with the shape closest to that of the goal
|
# Find the contour with the shape closest to that of the goal
|
||||||
goal = good_cnts[similarities.index(best)]
|
goal = good_cnts[similarities.index(best)]
|
||||||
|
return goal
|
||||||
|
|
||||||
|
def left_right_post(self, contour):
|
||||||
|
return contour[:,0].min(), contour[:,0].max()
|
||||||
|
|
||||||
|
def draw(self, frame):
|
||||||
|
goal = self.find_goal_contour(frame)
|
||||||
|
if goal is not None:
|
||||||
|
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
|
||||||
|
|
||||||
|
|
||||||
class BallFinder(object):
|
class BallFinder(object):
|
||||||
@@ -102,7 +117,6 @@ class BallFinder(object):
|
|||||||
|
|
||||||
# only proceed if at least one contour was found
|
# only proceed if at least one contour was found
|
||||||
if len(cnts) == 0:
|
if len(cnts) == 0:
|
||||||
self.history.appendleft(None)
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
# find the largest contour in the mask, then use it to compute
|
# find the largest contour in the mask, then use it to compute
|
||||||
@@ -111,23 +125,18 @@ class BallFinder(object):
|
|||||||
((x, y), radius) = cv2.minEnclosingCircle(c)
|
((x, y), radius) = cv2.minEnclosingCircle(c)
|
||||||
|
|
||||||
if radius < self.min_radius:
|
if radius < self.min_radius:
|
||||||
self.history.appendleft(None)
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
M = cv2.moments(c)
|
M = cv2.moments(c)
|
||||||
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
|
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
|
||||||
self.history.appendleft((center, int(radius)))
|
|
||||||
return center, int(radius)
|
return center, int(radius)
|
||||||
|
|
||||||
def visualize(self, frame):
|
def draw(self, frame):
|
||||||
if not self.viz:
|
ball = self.find_colored_ball(frame)
|
||||||
raise ValueError(
|
self.history.appendleft(ball)
|
||||||
'Visualization needs to be enabled when initializing'
|
|
||||||
)
|
|
||||||
|
|
||||||
frame = frame.copy()
|
if ball is not None:
|
||||||
if self.history[0] is not None:
|
center, radius = ball
|
||||||
center, radius = self.history[0]
|
|
||||||
cv2.circle(frame, center, radius, (255, 255, 0), 1)
|
cv2.circle(frame, center, radius, (255, 255, 0), 1)
|
||||||
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
||||||
|
|
||||||
@@ -138,13 +147,10 @@ class BallFinder(object):
|
|||||||
continue
|
continue
|
||||||
# otherwise, compute the thickness of the line and
|
# otherwise, compute the thickness of the line and
|
||||||
# draw the connecting lines
|
# draw the connecting lines
|
||||||
center_now = self.history[0][0]
|
center_now = self.history[i - 1][0]
|
||||||
center_prev = self.history[1][0]
|
center_prev = self.history[i][0]
|
||||||
thickness = int((64 / (i + 1))**0.5 * 2.5)
|
thickness = int((64 / (i + 1))**0.5 * 2.5)
|
||||||
cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
|
cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
|
||||||
# show the frame to screen
|
|
||||||
cv2.imshow("Frame", frame)
|
|
||||||
return cv2.waitKey(1)
|
|
||||||
|
|
||||||
def load_hsv_config(self, filename):
|
def load_hsv_config(self, filename):
|
||||||
with open(filename) as f:
|
with open(filename) as f:
|
||||||
|
|||||||
@@ -60,7 +60,8 @@ class VideoReader(object):
|
|||||||
def get_frame(self):
|
def get_frame(self):
|
||||||
succ, frame = self.cap.read()
|
succ, frame = self.cap.read()
|
||||||
if not succ:
|
if not succ:
|
||||||
raise ValueError('Error while reading video')
|
raise ValueError('Error while reading video.\n' +
|
||||||
|
'Or video is over.')
|
||||||
self.ctr += 1
|
self.ctr += 1
|
||||||
if (self.ctr == self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) and
|
if (self.ctr == self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) and
|
||||||
self.loop):
|
self.loop):
|
||||||
|
|||||||
Reference in New Issue
Block a user