Actually made goal recognition a lot robuster
This commit is contained in:
@@ -56,58 +56,60 @@ class Colorpicker(object):
|
|||||||
|
|
||||||
def goal_similarity(self, contour):
|
def goal_similarity(self, contour):
|
||||||
contour = contour.reshape((-1, 2))
|
contour = contour.reshape((-1, 2))
|
||||||
left, right = contour[:,0].min(), contour[:,0].max()
|
hull = cv2.convexHull(contour).reshape((-1, 2))
|
||||||
top, bottom = contour[:,1].min(), contour[:,1].max()
|
len_h = cv2.arcLength(hull, True)
|
||||||
approx_line = np.array([
|
|
||||||
[left, bottom],
|
|
||||||
[left, top],
|
|
||||||
[right, top],
|
|
||||||
[right, bottom]
|
|
||||||
])
|
|
||||||
shape_sim = np.array([
|
|
||||||
(np.abs(contour - al)).sum(axis=1) for al in approx_line
|
|
||||||
])
|
|
||||||
len_a = cv2.arcLength(approx_line, False)
|
|
||||||
shape_sim = shape_sim.min(axis=1) / len_a
|
|
||||||
|
|
||||||
shape_sim = shape_sim.sum()
|
# Wild assumption that the goal should lie close to its
|
||||||
|
# enclosing convex hull
|
||||||
|
shape_sim = np.linalg.norm(contour[:,None] - hull,
|
||||||
|
axis=2).min(axis=1).sum() / len_h
|
||||||
|
|
||||||
# len_c = cv2.arcLength(contour, True)
|
# Wild assumption that the area of the goal is rather small
|
||||||
|
# compared to its enclosing convex hull
|
||||||
area_c = cv2.contourArea(contour)
|
area_c = cv2.contourArea(contour)
|
||||||
|
area_h = cv2.contourArea(hull)
|
||||||
|
|
||||||
# len_similarity = ((len_c / 2 - len_a) / len_a)**2
|
area_sim = area_c / area_h
|
||||||
area_sim = area_c / ((right - left) * (bottom - top))
|
|
||||||
print(shape_sim, area_sim)
|
# Final similarity score is just the sum of both
|
||||||
return shape_sim * area_sim
|
final_score = shape_sim + area_sim
|
||||||
|
print(shape_sim, area_sim, final_score)
|
||||||
|
return final_score
|
||||||
|
|
||||||
def draw_contours(self, thr):
|
def draw_contours(self, thr):
|
||||||
|
# The ususal
|
||||||
thr = cv2.erode(thr, None, iterations=2)
|
thr = cv2.erode(thr, None, iterations=2)
|
||||||
thr = cv2.dilate(thr, None, iterations=2)
|
thr = cv2.dilate(thr, None, iterations=2)
|
||||||
cnts, hier = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
|
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
|
||||||
cv2.CHAIN_APPROX_SIMPLE)
|
cv2.CHAIN_APPROX_SIMPLE)
|
||||||
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
||||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
||||||
epsilon = 0.04 * perimeters
|
epsilon = 0.04 * perimeters
|
||||||
|
|
||||||
|
# Candidates are at most 6 biggest white areas
|
||||||
top_x = 6
|
top_x = 6
|
||||||
if len(areas) > top_x:
|
if len(areas) > top_x:
|
||||||
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
||||||
cnts = [cnts[i] for i in cnt_ind]
|
cnts = [cnts[i] for i in cnt_ind]
|
||||||
|
|
||||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
||||||
epsilon = 0.005 * perimeters
|
epsilon = 0.01 * perimeters
|
||||||
|
|
||||||
|
# Approximate resulting contours with simpler lines
|
||||||
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
||||||
for cnt, eps in zip(cnts, epsilon)]
|
for cnt, eps in zip(cnts, epsilon)]
|
||||||
|
|
||||||
good_cnt = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
# Goal needs normally 8 points for perfect approximation
|
||||||
|
# But with 6 can also be approximated
|
||||||
|
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
||||||
and not cv2.isContourConvex(cnt)]
|
and not cv2.isContourConvex(cnt)]
|
||||||
if good_cnt:
|
|
||||||
good_cnt = [min(good_cnt, key=self.goal_similarity)]
|
if good_cnts:
|
||||||
# print(good_cnt[0])
|
# Find the contour with the shape closest to that of the goal
|
||||||
|
good_cnts = [min(good_cnts, key=self.goal_similarity)]
|
||||||
|
|
||||||
thr = cv2.cvtColor(thr, cv2.COLOR_GRAY2BGR)
|
thr = cv2.cvtColor(thr, cv2.COLOR_GRAY2BGR)
|
||||||
cv2.drawContours(thr, good_cnt, -1, (0, 255, 0), 2)
|
cv2.drawContours(thr, good_cnts, -1, (0, 255, 0), 2)
|
||||||
return thr
|
return thr
|
||||||
|
|
||||||
def show_frame(self, frame, width=None, draw_contours=False):
|
def show_frame(self, frame, width=None, draw_contours=False):
|
||||||
|
|||||||
Reference in New Issue
Block a user