modularized image recognition further
This commit is contained in:
@@ -2,16 +2,16 @@ from __future__ import print_function
|
|||||||
from __future__ import division
|
from __future__ import division
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
from naoqi import ALProxy
|
|
||||||
from collections import deque
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import imutils
|
import imutils
|
||||||
|
from naoqi import ALProxy
|
||||||
|
from collections import deque
|
||||||
|
|
||||||
|
|
||||||
# Nao configuration
|
# Nao configuration
|
||||||
nao_ip = '192.168.0.11'
|
nao_ip = '192.168.0.11'
|
||||||
nao_port = 9559
|
nao_port = 9559
|
||||||
res = (3, (960, 1280)) # NAOQi code and acutal resolution
|
res = (2, (480, 640)) # NAOQi code and acutal resolution
|
||||||
fps = 1
|
fps = 1
|
||||||
cam_id = 0 # 0 := top, 1 := bottom
|
cam_id = 0 # 0 := top, 1 := bottom
|
||||||
|
|
||||||
@@ -19,10 +19,10 @@ cam_id = 0 # 0 := top, 1 := bottom
|
|||||||
red_lower = (0, 17, 225) # HSV coded red interval
|
red_lower = (0, 17, 225) # HSV coded red interval
|
||||||
red_upper = (42, 255, 255)
|
red_upper = (42, 255, 255)
|
||||||
min_radius = 10
|
min_radius = 10
|
||||||
resized_width = 600
|
resized_width = 600 # Maybe we need it maybe don't (None if don't)
|
||||||
|
|
||||||
|
|
||||||
def get_frame(cam_proxy, subscriber):
|
def get_frame_nao(cam_proxy, subscriber):
|
||||||
result = cam_proxy.getImageRemote(subscriber)
|
result = cam_proxy.getImageRemote(subscriber)
|
||||||
cam_proxy.releaseImage(subscriber)
|
cam_proxy.releaseImage(subscriber)
|
||||||
if result == None:
|
if result == None:
|
||||||
@@ -30,26 +30,25 @@ def get_frame(cam_proxy, subscriber):
|
|||||||
elif result[6] == None:
|
elif result[6] == None:
|
||||||
raise ValueError('no image data string')
|
raise ValueError('no image data string')
|
||||||
else:
|
else:
|
||||||
# create image
|
return np.frombuffer(result[6], dtype=np.uint8).reshape(
|
||||||
image = np.zeros((res[1][0], res[1][1], 3), np.uint8)
|
res[1][0], res[1][1], 3
|
||||||
values = map(ord, list(result[6]))
|
)
|
||||||
i = 0
|
# i = 0
|
||||||
for y in range(res[1][0]):
|
# for y in range(res[1][0]):
|
||||||
for x in range(res[1][1]):
|
# for x in range(res[1][1]): # columnwise
|
||||||
image.itemset((y, x, 0), values[i + 0])
|
# image.itemset((y, x, 0), values[i + 0])
|
||||||
image.itemset((y, x, 1), values[i + 1])
|
# image.itemset((y, x, 1), values[i + 1])
|
||||||
image.itemset((y, x, 2), values[i + 2])
|
# image.itemset((y, x, 2), values[i + 2])
|
||||||
i += 3
|
# i += 3
|
||||||
return image
|
# return image
|
||||||
|
|
||||||
|
|
||||||
def find_red_ball(frame):
|
def find_colored_ball(frame, hsv_lower, hsv_upper, min_radius):
|
||||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
# construct a mask for the color "green", then perform
|
# construct a mask for the color "green", then perform a series of
|
||||||
# a series of dilations and erosions to remove any small
|
# dilations and erosions to remove any small blobs left in the mask
|
||||||
# blobs left in the mask
|
mask = cv2.inRange(hsv, hsv_lower, hsv_upper)
|
||||||
mask = cv2.inRange(hsv, red_lower, red_upper)
|
|
||||||
mask = cv2.erode(mask, None, iterations=2)
|
mask = cv2.erode(mask, None, iterations=2)
|
||||||
mask = cv2.dilate(mask, None, iterations=2)
|
mask = cv2.dilate(mask, None, iterations=2)
|
||||||
|
|
||||||
@@ -62,9 +61,8 @@ def find_red_ball(frame):
|
|||||||
if len(cnts) == 0:
|
if len(cnts) == 0:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
# find the largest contour in the mask, then use
|
# find the largest contour in the mask, then use it to compute
|
||||||
# it to compute the minimum enclosing circle and
|
# the minimum enclosing circle and centroid
|
||||||
# centroid
|
|
||||||
c = max(cnts, key=cv2.contourArea)
|
c = max(cnts, key=cv2.contourArea)
|
||||||
((x, y), radius) = cv2.minEnclosingCircle(c)
|
((x, y), radius) = cv2.minEnclosingCircle(c)
|
||||||
|
|
||||||
@@ -76,43 +74,57 @@ def find_red_ball(frame):
|
|||||||
return center, radius
|
return center, radius
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
def draw_ball_markers(frame, center, radius, history):
|
||||||
|
# draw the enclosing circle and ball's centroid on the frame,
|
||||||
|
cv2.circle(frame, center, radius, (0, 255, 255), 1)
|
||||||
|
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
||||||
|
|
||||||
|
# loop over the set of tracked points
|
||||||
|
for i in range(1, len(history)):
|
||||||
|
# if either of the tracked points are None, ignore them
|
||||||
|
if history[i - 1] is None or history[i] is None:
|
||||||
|
continue
|
||||||
|
# otherwise, compute the thickness of the line and
|
||||||
|
# draw the connecting lines
|
||||||
|
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
|
||||||
|
cv2.line(frame, history[i - 1], history[i], (0, 0, 255), thickness)
|
||||||
|
|
||||||
|
return frame
|
||||||
|
|
||||||
|
|
||||||
|
def nao_demo():
|
||||||
vd_proxy = ALProxy('ALVideoDevice', nao_ip, nao_port)
|
vd_proxy = ALProxy('ALVideoDevice', nao_ip, nao_port)
|
||||||
cam_subscriber = vd_proxy.subscribeCamera(
|
cam_subscriber = vd_proxy.subscribeCamera(
|
||||||
"ball_finder", cam_id, res[0], 13, fps
|
"ball_finder", cam_id, res[0], 13, fps
|
||||||
)
|
)
|
||||||
pts = deque(maxlen=64)
|
history = deque(maxlen=64)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
while True:
|
while True:
|
||||||
frame = get_frame(vd_proxy, cam_subscriber)
|
frame = get_frame_nao(vd_proxy, cam_subscriber)
|
||||||
# resize the frame, blur it
|
|
||||||
frame = imutils.resize(frame, width=resized_width)
|
# maybe resize the frame, maybe blur it
|
||||||
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
|
if resized_width is not None:
|
||||||
|
frame = imutils.resize(frame, width=resized_width)
|
||||||
|
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
center, radius = find_red_ball(frame)
|
center, radius = find_colored_ball(
|
||||||
|
frame, red_lower, red_upper, min_radius
|
||||||
|
)
|
||||||
except TypeError: # No red ball found and function returned None
|
except TypeError: # No red ball found and function returned None
|
||||||
pts.appendleft(None)
|
history.appendleft(None)
|
||||||
continue
|
continue
|
||||||
|
history.appendleft(center)
|
||||||
|
draw_ball_markers(frame, center, radius, history)
|
||||||
|
|
||||||
# draw the circle and centroid on the frame,
|
# show the frame to screen
|
||||||
cv2.circle(frame, center, radius, (0, 255, 255), 1)
|
|
||||||
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
|
||||||
pts.appendleft(center)
|
|
||||||
|
|
||||||
# loop over the set of tracked points
|
|
||||||
for i in range(1, len(pts)):
|
|
||||||
# if either of the tracked points are None, ignore them
|
|
||||||
if pts[i - 1] is None or pts[i] is None:
|
|
||||||
continue
|
|
||||||
# otherwise, compute the thickness of the line and
|
|
||||||
# draw the connecting lines
|
|
||||||
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
|
|
||||||
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
|
|
||||||
|
|
||||||
# show the frame to our screen
|
|
||||||
cv2.imshow("Frame", frame)
|
cv2.imshow("Frame", frame)
|
||||||
key = cv2.waitKey(1) & 0xFF
|
cv2.waitKey(1)
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
vd_proxy.unsubscribe(cam_subscriber)
|
vd_proxy.unsubscribe(cam_subscriber)
|
||||||
|
|
||||||
print(vd_proxy.unsubscribe(cam_subscriber))
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
nao_demo()
|
||||||
|
|||||||
Reference in New Issue
Block a user