Implemented goal detection in colorpicker
This commit is contained in:
@@ -3,10 +3,12 @@ from __future__ import division
|
|||||||
|
|
||||||
import json
|
import json
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from .imagereaders import VideoReader, NaoImageReader, PictureReader
|
from .imagereaders import VideoReader, NaoImageReader, PictureReader
|
||||||
from .utils import read_config
|
from .utils import read_config, imresize
|
||||||
|
|
||||||
class Colorpicker(object):
|
class Colorpicker(object):
|
||||||
|
|
||||||
@@ -19,7 +21,7 @@ class Colorpicker(object):
|
|||||||
checkers = [
|
checkers = [
|
||||||
lambda x: min(x, self.settings['high_h'] - 1), # LOW H
|
lambda x: min(x, self.settings['high_h'] - 1), # LOW H
|
||||||
lambda x: min(x, self.settings['high_s'] - 1), # LOW S
|
lambda x: min(x, self.settings['high_s'] - 1), # LOW S
|
||||||
lambda x: min(x, self.settings['high_v'] - 1), # LOW H
|
lambda x: min(x, self.settings['high_v'] - 1), # LOW V
|
||||||
lambda x: max(x, self.settings['low_h'] + 1), # HIGH H
|
lambda x: max(x, self.settings['low_h'] + 1), # HIGH H
|
||||||
lambda x: max(x, self.settings['low_s'] + 1), # HIGH S
|
lambda x: max(x, self.settings['low_s'] + 1), # HIGH S
|
||||||
lambda x: max(x, self.settings['low_v'] + 1), # HIGH V
|
lambda x: max(x, self.settings['low_v'] + 1), # HIGH V
|
||||||
@@ -52,17 +54,75 @@ class Colorpicker(object):
|
|||||||
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
|
cv2.setTrackbarPos(name, self.WINDOW_DETECTION_NAME,
|
||||||
self.settings[name])
|
self.settings[name])
|
||||||
|
|
||||||
def show_frame(self, frame, width=None):
|
def goal_similarity(self, contour):
|
||||||
|
contour = contour.reshape((-1, 2))
|
||||||
|
left, right = contour[:,0].min(), contour[:,0].max()
|
||||||
|
top, bottom = contour[:,1].min(), contour[:,1].max()
|
||||||
|
approx_line = np.array([
|
||||||
|
[left, bottom],
|
||||||
|
[left, top],
|
||||||
|
[right, top],
|
||||||
|
[right, bottom]
|
||||||
|
])
|
||||||
|
shape_sim = np.array([
|
||||||
|
(np.abs(contour - al)).sum(axis=1) for al in approx_line
|
||||||
|
])
|
||||||
|
len_a = cv2.arcLength(approx_line, False)
|
||||||
|
shape_sim = shape_sim.min(axis=1) / len_a
|
||||||
|
|
||||||
|
shape_sim = shape_sim.sum()
|
||||||
|
|
||||||
|
# len_c = cv2.arcLength(contour, True)
|
||||||
|
area_c = cv2.contourArea(contour)
|
||||||
|
|
||||||
|
# len_similarity = ((len_c / 2 - len_a) / len_a)**2
|
||||||
|
area_sim = area_c / ((right - left) * (bottom - top))
|
||||||
|
print(shape_sim, area_sim)
|
||||||
|
return shape_sim * area_sim
|
||||||
|
|
||||||
|
def draw_contours(self, thr):
|
||||||
|
thr = cv2.erode(thr, None, iterations=2)
|
||||||
|
thr = cv2.dilate(thr, None, iterations=2)
|
||||||
|
cnts, hier = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
|
||||||
|
cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
||||||
|
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
||||||
|
epsilon = 0.04 * perimeters
|
||||||
|
|
||||||
|
top_x = 6
|
||||||
|
if len(areas) > top_x:
|
||||||
|
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
||||||
|
cnts = [cnts[i] for i in cnt_ind]
|
||||||
|
|
||||||
|
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
||||||
|
epsilon = 0.005 * perimeters
|
||||||
|
|
||||||
|
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
||||||
|
for cnt, eps in zip(cnts, epsilon)]
|
||||||
|
|
||||||
|
good_cnt = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
||||||
|
and not cv2.isContourConvex(cnt)]
|
||||||
|
if good_cnt:
|
||||||
|
good_cnt = [min(good_cnt, key=self.goal_similarity)]
|
||||||
|
# print(good_cnt[0])
|
||||||
|
|
||||||
|
thr = cv2.cvtColor(thr, cv2.COLOR_GRAY2BGR)
|
||||||
|
cv2.drawContours(thr, good_cnt, -1, (0, 255, 0), 2)
|
||||||
|
return thr
|
||||||
|
|
||||||
|
def show_frame(self, frame, width=None, draw_contours=False):
|
||||||
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||||
frame_threshold = cv2.inRange(
|
frame_threshold = cv2.inRange(
|
||||||
frame_HSV,
|
frame_HSV,
|
||||||
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
|
tuple(map(self.settings.get, ('low_h', 'low_s', 'low_v'))),
|
||||||
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
|
tuple(map(self.settings.get, ('high_h', 'high_s', 'high_v')))
|
||||||
)
|
)
|
||||||
if width:
|
frame = imresize(frame, width=width)
|
||||||
sf = width / frame.shape[1]
|
frame_threshold = imresize(frame_threshold, width=width)
|
||||||
frame = cv2.resize(frame, (0, 0), fx=sf, fy=sf)
|
|
||||||
frame_threshold = cv2.resize(frame_threshold, (0, 0), fx=sf, fy=sf)
|
if draw_contours:
|
||||||
|
frame_threshold = self.draw_contours(frame_threshold)
|
||||||
|
|
||||||
cv2.imshow(self.WINDOW_CAPTURE_NAME, frame)
|
cv2.imshow(self.WINDOW_CAPTURE_NAME, frame)
|
||||||
cv2.imshow(self.WINDOW_DETECTION_NAME, frame_threshold)
|
cv2.imshow(self.WINDOW_DETECTION_NAME, frame_threshold)
|
||||||
return cv2.waitKey(1)
|
return cv2.waitKey(1)
|
||||||
@@ -71,7 +131,7 @@ class Colorpicker(object):
|
|||||||
try:
|
try:
|
||||||
with open(filename) as f:
|
with open(filename) as f:
|
||||||
conf = json.load(f)
|
conf = json.load(f)
|
||||||
except FileNotFoundError:
|
except IOError:
|
||||||
conf = {}
|
conf = {}
|
||||||
conf.update(self.settings)
|
conf.update(self.settings)
|
||||||
with open(filename, 'w') as f:
|
with open(filename, 'w') as f:
|
||||||
@@ -166,7 +226,7 @@ if __name__ == '__main__':
|
|||||||
while True:
|
while True:
|
||||||
if not args.still:
|
if not args.still:
|
||||||
frame = rdr.get_frame()
|
frame = rdr.get_frame()
|
||||||
key = cp.show_frame(frame, args.width)
|
key = cp.show_frame(frame, width=args.width, draw_contours=True)
|
||||||
if key == ord('q') or key == 27:
|
if key == ord('q') or key == 27:
|
||||||
break
|
break
|
||||||
finally:
|
finally:
|
||||||
|
|||||||
8
pykick/goal_hsv.json
Normal file
8
pykick/goal_hsv.json
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
{
|
||||||
|
"low_s": 0,
|
||||||
|
"low_v": 159,
|
||||||
|
"high_h": 180,
|
||||||
|
"high_v": 255,
|
||||||
|
"low_h": 0,
|
||||||
|
"high_s": 62
|
||||||
|
}
|
||||||
@@ -62,9 +62,10 @@ class VideoReader(object):
|
|||||||
if not succ:
|
if not succ:
|
||||||
raise ValueError('Error while reading video')
|
raise ValueError('Error while reading video')
|
||||||
self.ctr += 1
|
self.ctr += 1
|
||||||
if self.ctr == self.cap.get(cv2.CAP_PROP_FRAME_COUNT) and self.loop:
|
if (self.ctr == self.cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) and
|
||||||
|
self.loop):
|
||||||
self.ctr = 0
|
self.ctr = 0
|
||||||
self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
self.cap.set(cv2.cv.CV_CAP_PROP_POS_FRAMES, 0)
|
||||||
return frame
|
return frame
|
||||||
|
|
||||||
def close(self):
|
def close(self):
|
||||||
|
|||||||
@@ -1,5 +1,8 @@
|
|||||||
|
from __future__ import division
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import json
|
import json
|
||||||
|
from cv2 import resize as cv2_resize
|
||||||
|
|
||||||
|
|
||||||
HERE = os.path.dirname(os.path.realpath(__file__))
|
HERE = os.path.dirname(os.path.realpath(__file__))
|
||||||
@@ -9,3 +12,18 @@ def read_config(cfg_file=os.path.join(HERE, 'nao_defaults.json')):
|
|||||||
with open(cfg_file) as f:
|
with open(cfg_file) as f:
|
||||||
cfg = json.load(f)
|
cfg = json.load(f)
|
||||||
return cfg
|
return cfg
|
||||||
|
|
||||||
|
|
||||||
|
def imresize(frame, width=None, height=None):
|
||||||
|
if not width and not height:
|
||||||
|
return frame
|
||||||
|
if not height:
|
||||||
|
sf = width / frame.shape[1]
|
||||||
|
sz = (0, 0)
|
||||||
|
if not width:
|
||||||
|
sf = height / frame.shape[0]
|
||||||
|
sz = (0, 0)
|
||||||
|
if width and height:
|
||||||
|
sf = 0
|
||||||
|
sz = (width, height)
|
||||||
|
return cv2_resize(frame, sz, fx=sf, fy=sf)
|
||||||
|
|||||||
Reference in New Issue
Block a user