diff --git a/scripts/ball_tracking.py b/scripts/ball_tracking.py new file mode 100644 index 0000000..ec76fcf --- /dev/null +++ b/scripts/ball_tracking.py @@ -0,0 +1,116 @@ +# This script recognizes the ball in a given video file +# python ball_tracking.py --video test3.avi + +# import the necessary packages +from collections import deque +import numpy as np +import argparse +import imutils +import cv2 +from time import sleep + +# construct the argument parse and parse the arguments +ap = argparse.ArgumentParser() +ap.add_argument("-v", "--video", + help="path to the (optional) video file") +ap.add_argument("-b", "--buffer", type=int, default=64, + help="max buffer size") +args = vars(ap.parse_args()) + +# define the lower and upper boundaries of the "green" +# ball in the HSV color space, then initialize the +# list of tracked points +#greenLower = (0, 17, 225) +#greenUpper = (42, 255, 255) +greenLower=(0,184,170) +greenUpper=(2,255,255) + +#greenLower = (29, 86, 6) +#greenUpper = (64, 255, 255) +pts = deque(maxlen=args["buffer"]) + +# if a video path was not supplied, grab the reference +# to the webcam +if not args.get("video", False): + camera = cv2.VideoCapture(0) + +# otherwise, grab a reference to the video file +else: + camera = cv2.VideoCapture(args["video"]) + +# keep looping +while True: + # grab the current frame + (grabbed, frame) = camera.read() + + # if we are viewing a video and we did not grab a frame, + # then we have reached the end of the video + if args.get("video") and not grabbed: + break + + # resize the frame, blur it, and convert it to the HSV + # color space + frame = imutils.resize(frame, width=600) + # blurred = cv2.GaussianBlur(frame, (11, 11), 0) + hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) + + # construct a mask for the color "green", then perform + # a series of dilations and erosions to remove any small + # blobs left in the mask + mask = cv2.inRange(hsv, greenLower, greenUpper) + mask = cv2.erode(mask, None, iterations=2) + mask = cv2.dilate(mask, None, iterations=2) + + # find contours in the mask and initialize the current + # (x, y) center of the ball + cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, + cv2.CHAIN_APPROX_SIMPLE)[-2] + center = None + + # only proceed if at least one contour was found + if len(cnts) > 0: + # find the largest contour in the mask, then use + # it to compute the minimum enclosing circle and + # centroid + c = max(cnts, key=cv2.contourArea) + ((x, y), radius) = cv2.minEnclosingCircle(c) + M = cv2.moments(c) + center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) + + # only proceed if the radius meets a minimum size + if radius > 10: + # draw the circle and centroid on the frame, + # then update the list of tracked points + cv2.circle(frame, (int(x), int(y)), int(radius), + #(0, 255, 255), 2) + (0,255,255),2) + cv2.circle(frame, center, 5, (0, 0, 255), -1) + + # update the points queue + pts.appendleft(center) + + # loop over the set of tracked points + for i in xrange(1, len(pts)): + # if either of the tracked points are None, ignore + # them + if pts[i - 1] is None or pts[i] is None: + continue + + # otherwise, compute the thickness of the line and + # draw the connecting lines + thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 1.25) + cv2.line(frame, pts[i - 1], pts[i], (0, 255, 0), thickness) + + # show the frame to our screen + cv2.imshow("Frame", frame) + key = cv2.waitKey(1) & 0xFF + + sleep(0.05) + # if the 'q' key is pressed, stop the loop + if key == ord("q"): + break + +# cleanup the camera and close any open windows +camera.release() +cv2.destroyAllWindows() +