# This script recognizes the ball in a given video file # python ball_tracking.py --video test3.avi # import the necessary packages from collections import deque import numpy as np import argparse import imutils import cv2 from time import sleep # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the (optional) video file") ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size") args = vars(ap.parse_args()) # define the lower and upper boundaries of the "green" # ball in the HSV color space, then initialize the # list of tracked points #greenLower = (0, 17, 225) #greenUpper = (42, 255, 255) greenLower=(0,184,170) greenUpper=(2,255,255) #greenLower = (29, 86, 6) #greenUpper = (64, 255, 255) pts = deque(maxlen=args["buffer"]) # if a video path was not supplied, grab the reference # to the webcam if not args.get("video", False): camera = cv2.VideoCapture(0) # otherwise, grab a reference to the video file else: camera = cv2.VideoCapture(args["video"]) # keep looping while True: # grab the current frame (grabbed, frame) = camera.read() # if we are viewing a video and we did not grab a frame, # then we have reached the end of the video if args.get("video") and not grabbed: break # resize the frame, blur it, and convert it to the HSV # color space # frame = imutils.resize(frame, width=600) # blurred = cv2.GaussianBlur(frame, (11, 11), 0) # hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask ''' mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) ''' # create hsv and do some mask stuff frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # frame_test=cv2.cvtColor(frame_HSV,cv2.COLOR_HSV2BGR) # frame_gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) # frame_threshold=cv2.inRange(frame_HSV,(0,9,139),(180,81,255)) frame_threshold=cv2.inRange(frame_HSV,(0,0,182),(180,60,255)) frame_threshold = cv2.GaussianBlur(frame_threshold,(9,9),3,3) erode_element = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10)) #dilate_element = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 20)) eroded_mask = cv2.erode(frame_threshold,erode_element) #dilated_mask = cv2.dilate(eroded_mask,dilate_element) #frame_threshold=eroded_mask # preparation for edge detection res = cv2.bitwise_and(frame,frame, mask=eroded_mask) res=cv2.cvtColor(res,cv2.COLOR_BGR2GRAY) # use canny edge frame_edge=cv2.Canny(res,90,494,apertureSize=3) #frame_edge=cv2.Canny(res,0,123,apertureSize=3) # use hough lines lines = cv2.HoughLines(frame_edge,1,1*np.pi/180,80,0,0) for rho,theta in lines[0]: # print(rho, theta) a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 200*(-b)) y1 = int(y0 + 200*(a)) x2 = int(x0 - 200*(-b)) y2 = int(y0 - 200*(a)) if (theta>np.pi/180*170 or thetanp.pi/180*80 and theta 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(frame, (int(x), int(y)), int(radius), #(0, 255, 255), 2) (0,255,255),2) cv2.circle(frame, center, 5, (0, 0, 255), -1) # update the points queue pts.appendleft(center) # loop over the set of tracked points for i in xrange(1, len(pts)): # if either of the tracked points are None, ignore # them if pts[i - 1] is None or pts[i] is None: continue # otherwise, compute the thickness of the line and # draw the connecting lines thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 1.25) cv2.line(frame, pts[i - 1], pts[i], (0, 255, 0), thickness) ''' # show the frame to our screen #cv2.imshow("Frame", frame) cv2.imshow("Frame_threshold",frame_threshold) cv2.imshow("eroded_mask",eroded_mask) cv2.imshow("frame edge",frame_edge) cv2.imshow("result eroded_mask applied",res) cv2.imshow("frame with lines",frame) key = cv2.waitKey(1) & 0xFF sleep(0.05) # if the 'q' key is pressed, stop the loop if key == ord("q"): break # cleanup the camera and close any open windows camera.release() cv2.destroyAllWindows()