Files
kick-it/pykick/finders.py

157 lines
5.5 KiB
Python

from __future__ import division
from __future__ import print_function
from collections import deque
import cv2
import numpy as np
class GoalFinder(object):
def __init__(self, hsv_lower, hsv_upper):
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def goal_similarity(self, contour):
contour = contour.squeeze(axis=1)
hull = cv2.convexHull(contour).squeeze(axis=1)
len_h = cv2.arcLength(hull, True)
# Wild assumption that the goal should lie close to its
# enclosing convex hull
shape_sim = np.linalg.norm(contour[:,None] - hull,
axis=2).min(axis=1).sum() / len_h
# Wild assumption that the area of the goal is rather small
# compared to its enclosing convex hull
area_c = cv2.contourArea(contour)
area_h = cv2.contourArea(hull)
area_sim = area_c / area_h
# Final similarity score is just the sum of both
final_score = shape_sim + area_sim
print('Goal candidate:', shape_sim, area_sim, final_score)
return final_score
def find_goal_contour(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
# The ususal
thr = cv2.erode(thr, None, iterations=2)
thr = cv2.dilate(thr, None, iterations=2)
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
# Candidates are at most 6 biggest white areas
top_x = 6
if len(areas) > top_x:
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
cnts = [cnts[i] for i in cnt_ind]
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
# Approximate resulting contours with simpler lines
cnts = [cv2.approxPolyDP(cnt, eps, True)
for cnt, eps in zip(cnts, epsilon)]
# Goal needs normally 8 points for perfect approximation
# But with 6 can also be approximated
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
and not cv2.isContourConvex(cnt)]
if not good_cnts:
return None
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
best = min(similarities)
print('Final goal score:', best)
print()
if best > 0.35:
return None
# Find the contour with the shape closest to that of the goal
goal = good_cnts[similarities.index(best)]
return goal
def left_right_post(self, contour):
return contour[:,0].min(), contour[:,0].max()
def goal_center(self, contour):
l, r = self.left_right_post(self, contour)
return (l + r) / 2
def draw(self, frame, goal):
if goal is not None:
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
class BallFinder(object):
def __init__(self, hsv_lower, hsv_upper, min_radius):
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
self.min_radius = min_radius
self.history = deque(maxlen=64)
def find_colored_ball(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color, then perform a series of
# dilations and erosions to remove any small blobs left in the mask ?
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
# mask = cv2.erode(mask, None, iterations=2)
# mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) == 0:
print('No red contours')
self.history.appendleft(None)
return None
# find the largest contour in the mask, then use it to compute
# the minimum enclosing circle and centroid
c = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(c)
min_radius_abs = self.min_radius * frame.shape[0]
if radius < min_radius_abs:
print('Radius:', radius, 'Min radius:', min_radius_abs)
self.history.appendleft(None)
return None
M = cv2.moments(c)
try:
center = int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])
except ZeroDivisionError:
# It's weird but happened yeah
self.history.append(None)
return None
self.history.appendleft((center, int(radius)))
print('Ball:', center, radius)
return center, int(radius)
def draw(self, frame, ball):
if ball is not None:
center, radius = ball
cv2.circle(frame, center, radius, (255, 255, 0), 1)
# cv2.circle(frame, center, 5, (0, 255, 0), -1)
# loop over the set of tracked points
# for i in range(1, len(self.history)):
# if either of the tracked points are None, ignore them
# if self.history[i - 1] is None or self.history[i] is None:
# continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
# center_now = self.history[i - 1][0]
# center_prev = self.history[i][0]
# thickness = int((64 / (i + 1))**0.5 * 2.5)
# cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)