Files
kick-it/pykick/finders.py
2018-11-05 16:17:17 +01:00

371 lines
10 KiB
Python

"""Classes for object detection."""
from __future__ import division
from __future__ import print_function
from collections import deque
import cv2
import numpy as np
from .utils import hsv_mask
class FieldFinder(object):
"""Finds the contour of the field."""
def __init__(self, hsv_lower, hsv_upper):
"""
Parameters
----------
hsv_lower, hsv_upper : list
HSV interval of the field in format [H, S, V]
"""
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def primary_mask(self, frame):
"""Apply thresholding to the camera image.
Parameters
----------
frame : array
OpenCV Image in BGR format
Returns
-------
array
OpenCV 8-bit 1-channel mask
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
blurred = cv2.GaussianBlur(hsv, (25, 25), 20)
thr = hsv_mask(blurred, self.hsv_lower, self.hsv_upper)
thr = cv2.erode(thr, None, iterations=6)
thr = cv2.dilate(thr, None, iterations=10)
return thr
def find(self, frame):
"""Find the contour of the field.
Parameters
----------
frame : array
OpenCV Image in BGR format.
Returns
-------
contour or None
OpenCV contour of the field or None if wasn't found.
"""
thr = self.primary_mask(frame)
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if not cnts:
return None
field = max(cnts, key=cv2.contourArea)
field = cv2.convexHull(field)
return field
def draw(self, frame, field):
"""Draw the contour on the image (demo purposes).
Parameters
----------
frame : array
OpenCV Image in 3-channel format.
field : contour
OpenCV contour of the field as returned by `find`.
Returns
-------
array
New image with the field contour drawn.
"""
if field is not None:
frame = frame.copy()
cv2.drawContours(frame, (field,), -1, (0, 0, 255), 2)
return frame
def mask_it(self, frame, field, inverse=False):
"""Mask out the field or everything else in the image.
Parameters
----------
frame : array
OpenCV Image in 3-channel format.
field : contour
OpenCV contour of the field as returned by `find`.
inverse : bool
If True, mask out the field, if False, everything else.
Returns
-------
array
New image with masked out something.
"""
if field is not None:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
cv2.drawContours(mask, (field,), -1, 255, -1)
if inverse:
mask = cv2.bitwise_not(mask)
frame = cv2.bitwise_and(frame, frame, mask=mask)
return frame
class GoalFinder(object):
"""Find a massive distinctly single-colored goal frame."""
def __init__(self, hsv_lower, hsv_upper):
"""
Parameters
----------
hsv_lower, hsv_upper : list
HSV interval of the field in format [H, S, V]
"""
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def primary_mask(self, frame):
"""Apply thresholding to the camera image.
Parameters
----------
frame : array
OpenCV Image in BGR format
Returns
-------
array
OpenCV 8-bit 1-channel mask
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
thr = hsv_mask(hsv, self.hsv_lower, self.hsv_upper)
thr = cv2.erode(thr, None, iterations=2)
thr = cv2.dilate(thr, None, iterations=2)
return thr
def goal_similarity(self, contour):
"""Calculate the similarity of a contour to the goal.
Parameters
----------
contour : contour
An OpenCV contour.
Returns
-------
float
Similarity (or dissimilarity bcs the smaller the more similar).
"""
hull = cv2.convexHull(contour).squeeze()
len_h = cv2.arcLength(hull, True)
# Supporting points of goal contour should lie close to its
# enclosing convex hull
distances = np.array([[np.sqrt(np.sum(point**2)) for point in node]
for node in contour - hull])
min_dist = np.array([d.min() for d in distances])
shape_sim = min_dist.sum() / len_h
# Wild assumption that the area of the goal is rather small
# compared to its enclosing convex hull
area_c = cv2.contourArea(contour)
area_h = cv2.contourArea(hull)
area_sim = area_c / area_h
# Final similarity score is just the sum of both
final_score = shape_sim + area_sim
print('Goal candidate:', shape_sim, area_sim, final_score)
return final_score
def find(self, frame):
"""Find the contour of the goal.
Parameters
----------
frame : array
An OpenCV image in BGR format.
Returns
-------
contour or None
An OpenCV contour of the goal or None if wasn't found.
"""
thr = self.primary_mask(frame)
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts.sort(key=cv2.contourArea, reverse=True)
top_x = 6
cnts = cnts[:top_x]
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
# Approximate resulting contours with simpler lines
cnts = [cv2.approxPolyDP(cnt, eps, True)
for cnt, eps in zip(cnts, epsilon)]
# Goal needs normally 8 points for perfect approximation
# But with 6 can also be approximated
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
and not cv2.isContourConvex(cnt)]
if not good_cnts:
return None
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
best = min(similarities)
print('Final goal score:', best)
print()
if best > 0.45:
return None
# Find the contour with the shape closest to that of the goal
goal = good_cnts[similarities.index(best)]
return goal
def left_right_post(self, contour):
"""Return the pixel coordinates of the L-R goalpost."""
return contour[...,0].min(), contour[...,0].max()
def goal_center(self, contour):
"""Return the center of the goal in pixel coordinates."""
l, r = self.left_right_post(contour)
print('Left goal post:', l,
'Right goal post:', r)
return (l + r) / 2
def draw(self, frame, goal):
"""Draw the contour on the image (demo purposes).
Parameters
----------
frame : array
OpenCV Image in 3-channel format.
field : contour
OpenCV contour of the goal as returned by `find`.
Returns
-------
array
New image with the goal contour drawn.
"""
if goal is not None:
frame = frame.copy()
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
return frame
class BallFinder(object):
"""Class to find the red ball."""
def __init__(self, hsv_lower, hsv_upper, min_radius=0.02):
"""
Parameters
----------
hsv_lower, hsv_upper : list
HSV interval of the ball in format [H, S, V].
min_radius : float
The minimal radius of the ball as fraction of image height.
"""
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
self.min_radius = min_radius
self.history = deque(maxlen=64)
def primary_mask(self, frame):
"""Apply thresholding to the camera image.
Parameters
----------
frame : array
OpenCV Image in BGR format
Returns
-------
array
OpenCV 8-bit 1-channel mask
"""
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = hsv_mask(hsv, self.hsv_lower, self.hsv_upper)
return mask
def find(self, frame):
"""Find the x, y ball coordinates and the radius.
Parameters
----------
frame : array
An OpenCV image in BGR format.
Returns
-------
tuple or None
((x, y), radius) or None if wasn't found
"""
mask = self.primary_mask(frame)
cnts, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
print('No red contours')
self.history.appendleft(None)
return None
c = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(c)
min_radius_abs = self.min_radius * frame.shape[0]
if radius < min_radius_abs:
print('Radius:', radius, 'Min radius:', min_radius_abs)
self.history.appendleft(None)
return None
M = cv2.moments(c)
try:
center = int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])
except ZeroDivisionError:
# It's weird but happened yeah
self.history.append(None)
return None
self.history.appendleft((center, int(radius)))
print('Ball:', center, radius)
return center, int(radius)
def draw(self, frame, ball):
"""Draw the contour on the image (demo purposes).
Parameters
----------
frame : array
OpenCV Image in 3-channel format.
field : contour
tuple describing the ball as returned by `find`.
Returns
-------
array
New image with the field contour drawn.
"""
if ball is not None:
frame = frame.copy()
center, radius = ball
cv2.circle(frame, center, radius, (255, 255, 0), 1)
return frame