155 lines
5.4 KiB
Python
155 lines
5.4 KiB
Python
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import deque
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
class GoalFinder(object):
|
|
|
|
def __init__(self, hsv_lower, hsv_upper):
|
|
|
|
self.hsv_lower = hsv_lower
|
|
self.hsv_upper = hsv_upper
|
|
|
|
def goal_similarity(self, contour):
|
|
contour = contour.squeeze(axis=1)
|
|
hull = cv2.convexHull(contour).squeeze(axis=1)
|
|
len_h = cv2.arcLength(hull, True)
|
|
|
|
# Wild assumption that the goal should lie close to its
|
|
# enclosing convex hull
|
|
shape_sim = np.linalg.norm(contour[:,None] - hull,
|
|
axis=2).min(axis=1).sum() / len_h
|
|
|
|
# Wild assumption that the area of the goal is rather small
|
|
# compared to its enclosing convex hull
|
|
area_c = cv2.contourArea(contour)
|
|
area_h = cv2.contourArea(hull)
|
|
|
|
area_sim = area_c / area_h
|
|
|
|
# Final similarity score is just the sum of both
|
|
final_score = shape_sim + area_sim
|
|
print('Goal:', shape_sim, area_sim, final_score)
|
|
return final_score
|
|
|
|
def find_goal_contour(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
|
|
|
# The ususal
|
|
thr = cv2.erode(thr, None, iterations=2)
|
|
thr = cv2.dilate(thr, None, iterations=2)
|
|
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
|
# Candidates are at most 6 biggest white areas
|
|
top_x = 6
|
|
if len(areas) > top_x:
|
|
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
|
cnts = [cnts[i] for i in cnt_ind]
|
|
|
|
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
|
|
|
|
# Approximate resulting contours with simpler lines
|
|
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
|
for cnt, eps in zip(cnts, epsilon)]
|
|
|
|
# Goal needs normally 8 points for perfect approximation
|
|
# But with 6 can also be approximated
|
|
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
|
and not cv2.isContourConvex(cnt)]
|
|
|
|
if not good_cnts:
|
|
return None
|
|
|
|
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
|
|
best = min(similarities)
|
|
if best > 0.35:
|
|
return None
|
|
# Find the contour with the shape closest to that of the goal
|
|
goal = good_cnts[similarities.index(best)]
|
|
return goal
|
|
|
|
def left_right_post(self, contour):
|
|
return contour[:,0].min(), contour[:,0].max()
|
|
|
|
def goal_center(self, contour):
|
|
l, r = self.left_right_post(self, contour)
|
|
return (l + r) / 2
|
|
|
|
def draw(self, frame):
|
|
goal = self.find_goal_contour(frame)
|
|
if goal is not None:
|
|
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
|
|
|
|
|
|
class BallFinder(object):
|
|
|
|
def __init__(self, hsv_lower, hsv_upper, min_radius):
|
|
|
|
self.hsv_lower = hsv_lower
|
|
self.hsv_upper = hsv_upper
|
|
self.min_radius = min_radius
|
|
self.history = deque(maxlen=64)
|
|
|
|
def find_colored_ball(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
|
|
# construct a mask for the color, then perform a series of
|
|
# dilations and erosions to remove any small blobs left in the mask
|
|
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
|
mask = cv2.erode(mask, None, iterations=2)
|
|
mask = cv2.dilate(mask, None, iterations=2)
|
|
|
|
# find contours in the mask and initialize the current
|
|
# (x, y) center of the ball
|
|
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)[-2]
|
|
|
|
# only proceed if at least one contour was found
|
|
if len(cnts) == 0:
|
|
return None
|
|
|
|
# find the largest contour in the mask, then use it to compute
|
|
# the minimum enclosing circle and centroid
|
|
c = max(cnts, key=cv2.contourArea)
|
|
((x, y), radius) = cv2.minEnclosingCircle(c)
|
|
|
|
if radius < self.min_radius:
|
|
return None
|
|
|
|
M = cv2.moments(c)
|
|
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
|
|
return center, int(radius)
|
|
|
|
def draw(self, frame):
|
|
ball = self.find_colored_ball(frame)
|
|
self.history.appendleft(ball)
|
|
|
|
if ball is not None:
|
|
center, radius = ball
|
|
cv2.circle(frame, center, radius, (255, 255, 0), 1)
|
|
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
|
|
|
# loop over the set of tracked points
|
|
for i in range(1, len(self.history)):
|
|
# if either of the tracked points are None, ignore them
|
|
if self.history[i - 1] is None or self.history[i] is None:
|
|
continue
|
|
# otherwise, compute the thickness of the line and
|
|
# draw the connecting lines
|
|
center_now = self.history[i - 1][0]
|
|
center_prev = self.history[i][0]
|
|
thickness = int((64 / (i + 1))**0.5 * 2.5)
|
|
cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
|
|
|
|
# def load_hsv_config(self, filename):
|
|
# with open(filename) as f:
|
|
# hsv = json.load(f)
|
|
# self.hsv_lower = tuple(map(hsv.get, ('low_h', 'low_s', 'low_v')))
|
|
# self.hsv_upper = tuple(map(hsv.get, ('high_h', 'high_s', 'high_v')))
|