Files
kick-it/pykick/goal_video_detection.py

174 lines
5.1 KiB
Python

# This script recognizes the ball in a given video file
# python ball_tracking.py --video test3.avi
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
from time import sleep
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
#greenLower = (0, 17, 225)
#greenUpper = (42, 255, 255)
greenLower=(0,184,170)
greenUpper=(2,255,255)
#greenLower = (29, 86, 6)
#greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, blur it, and convert it to the HSV
# color space
# frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
# hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
'''
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
'''
# create hsv and do some mask stuff
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# frame_test=cv2.cvtColor(frame_HSV,cv2.COLOR_HSV2BGR)
# frame_gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
# frame_threshold=cv2.inRange(frame_HSV,(0,9,139),(180,81,255))
frame_threshold=cv2.inRange(frame_HSV,(0,0,182),(180,60,255))
frame_threshold = cv2.GaussianBlur(frame_threshold,(9,9),3,3)
erode_element = cv2.getStructuringElement(cv2.MORPH_RECT, (10, 10))
#dilate_element = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 20))
eroded_mask = cv2.erode(frame_threshold,erode_element)
#dilated_mask = cv2.dilate(eroded_mask,dilate_element)
#frame_threshold=eroded_mask
# preparation for edge detection
res = cv2.bitwise_and(frame,frame, mask=eroded_mask)
res=cv2.cvtColor(res,cv2.COLOR_BGR2GRAY)
# use canny edge
frame_edge=cv2.Canny(res,90,494,apertureSize=3)
#frame_edge=cv2.Canny(res,0,123,apertureSize=3)
# use hough lines
lines = cv2.HoughLines(frame_edge,1,1*np.pi/180,80,0,0)
for rho,theta in lines[0]:
# print(rho, theta)
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 200*(-b))
y1 = int(y0 + 200*(a))
x2 = int(x0 - 200*(-b))
y2 = int(y0 - 200*(a))
if (theta>np.pi/180*170 or theta<np.pi/180*10):
#if (theta>np.pi/180*80 and theta<np.pi/180*100):
cv2.line(frame,(x1,y1),(x2,y2),(0,0,255),2)
'''
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
#(0, 255, 255), 2)
(0,255,255),2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in xrange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 1.25)
cv2.line(frame, pts[i - 1], pts[i], (0, 255, 0), thickness)
'''
# show the frame to our screen
#cv2.imshow("Frame", frame)
cv2.imshow("Frame_threshold",frame_threshold)
cv2.imshow("eroded_mask",eroded_mask)
cv2.imshow("frame edge",frame_edge)
cv2.imshow("result eroded_mask applied",res)
cv2.imshow("frame with lines",frame)
key = cv2.waitKey(1) & 0xFF
sleep(0.05)
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()