Files
kick-it/pykick/finders.py

202 lines
6.9 KiB
Python

from __future__ import division
from __future__ import print_function
from collections import deque
import cv2
import numpy as np
class FieldFinder(object):
def __init__(self, hsv_lower, hsv_upper):
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def primary_mask(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
blurred = cv2.GaussianBlur(hsv, (25, 25), 20)
thr = cv2.inRange(blurred, tuple(self.hsv_lower), tuple(self.hsv_upper))
thr = cv2.erode(thr, None, iterations=6)
thr = cv2.dilate(thr, None, iterations=10)
return thr
def find(self, frame):
thr = self.primary_mask(frame)
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if not cnts:
return None
field = max(cnts, key=cv2.contourArea)
field = cv2.convexHull(field)
return field
def draw(self, frame, field):
if field is not None:
frame = frame.copy()
cv2.drawContours(frame, (field,), -1, (0, 0, 255), 2)
return frame
def mask_it(self, frame, field, inverse=False):
if field is not None:
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
cv2.drawContours(mask, (field,), -1, 255, -1)
if inverse:
mask = cv2.bitwise_not(mask)
frame = cv2.bitwise_and(frame, frame, mask=mask)
return frame
class GoalFinder(object):
def __init__(self, hsv_lower, hsv_upper):
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def primary_mask(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
thr = cv2.erode(thr, None, iterations=2)
thr = cv2.dilate(thr, None, iterations=2)
return thr
def goal_similarity(self, contour):
hull = cv2.convexHull(contour).squeeze()
len_h = cv2.arcLength(hull, True)
# Supporting points of goal contour should lie close to its
# enclosing convex hull
distances = np.array([[np.sqrt(np.sum(point**2)) for point in node]
for node in contour - hull])
min_dist = np.array([d.min() for d in distances])
shape_sim = min_dist.sum() / len_h
# Wild assumption that the area of the goal is rather small
# compared to its enclosing convex hull
area_c = cv2.contourArea(contour)
area_h = cv2.contourArea(hull)
area_sim = area_c / area_h
# Final similarity score is just the sum of both
final_score = shape_sim + area_sim
print('Goal candidate:', shape_sim, area_sim, final_score)
return final_score
def find(self, frame):
thr = self.primary_mask(frame)
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts.sort(key=cv2.contourArea, reverse=True)
top_x = 6
cnts = cnts[:top_x]
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
# Approximate resulting contours with simpler lines
cnts = [cv2.approxPolyDP(cnt, eps, True)
for cnt, eps in zip(cnts, epsilon)]
# Goal needs normally 8 points for perfect approximation
# But with 6 can also be approximated
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
and not cv2.isContourConvex(cnt)]
if not good_cnts:
return None
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
best = min(similarities)
print('Final goal score:', best)
print()
if best > 0.45:
return None
# Find the contour with the shape closest to that of the goal
goal = good_cnts[similarities.index(best)]
return goal
def left_right_post(self, contour):
return contour[:,0].min(), contour[:,0].max()
def goal_center(self, contour):
l, r = self.left_right_post(contour)
print('Left goal post:', l,
'Right goal post:', r)
return (l + r) / 2
def draw(self, frame, goal):
if goal is not None:
frame = frame.copy()
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
return frame
class BallFinder(object):
def __init__(self, hsv_lower, hsv_upper, min_radius):
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
self.min_radius = min_radius
self.history = deque(maxlen=64)
def find(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color, then perform a series of
# dilations and erosions to remove any small blobs left in the mask ?
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
# mask = cv2.erode(mask, None, iterations=2)
# mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) == 0:
print('No red contours')
self.history.appendleft(None)
return None
# find the largest contour in the mask, then use it to compute
# the minimum enclosing circle and centroid
c = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(c)
min_radius_abs = self.min_radius * frame.shape[0]
if radius < min_radius_abs:
print('Radius:', radius, 'Min radius:', min_radius_abs)
self.history.appendleft(None)
return None
M = cv2.moments(c)
try:
center = int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])
except ZeroDivisionError:
# It's weird but happened yeah
self.history.append(None)
return None
self.history.appendleft((center, int(radius)))
print('Ball:', center, radius)
return center, int(radius)
def draw(self, frame, ball):
if ball is not None:
frame = frame.copy()
center, radius = ball
cv2.circle(frame, center, radius, (255, 255, 0), 1)
return frame
# cv2.circle(frame, center, 5, (0, 255, 0), -1)
# loop over the set of tracked points
# for i in range(1, len(self.history)):
# if either of the tracked points are None, ignore them
# if self.history[i - 1] is None or self.history[i] is None:
# continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
# center_now = self.history[i - 1][0]
# center_prev = self.history[i][0]
# thickness = int((64 / (i + 1))**0.5 * 2.5)
# cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)