207 lines
7.1 KiB
Python
207 lines
7.1 KiB
Python
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import deque
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
class FieldFinder(object):
|
|
|
|
def __init__(self, hsv_lower, hsv_upper):
|
|
self.hsv_lower = tuple(hsv_lower)
|
|
self.hsv_upper = tuple(hsv_upper)
|
|
|
|
def primary_mask(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
blurred = cv2.GaussianBlur(hsv, (25, 25), 20)
|
|
thr = cv2.inRange(blurred, tuple(self.hsv_lower), tuple(self.hsv_upper))
|
|
thr = cv2.erode(thr, None, iterations=6)
|
|
thr = cv2.dilate(thr, None, iterations=10)
|
|
return thr
|
|
|
|
def find(self, frame):
|
|
thr = self.primary_mask(frame)
|
|
cnts, _ = cv2.findContours(thr.copy(), cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
if not cnts:
|
|
return None
|
|
field = max(cnts, key=cv2.contourArea)
|
|
field = cv2.convexHull(field)
|
|
return field
|
|
|
|
def draw(self, frame, field):
|
|
if field is not None:
|
|
frame = frame.copy()
|
|
cv2.drawContours(frame, (field,), -1, (0, 0, 255), 2)
|
|
return frame
|
|
|
|
def mask_it(self, frame, field, inverse=False):
|
|
if field is not None:
|
|
mask = np.zeros(frame.shape[:2], dtype=np.uint8)
|
|
cv2.drawContours(mask, (field,), -1, 255, -1)
|
|
if inverse:
|
|
mask = cv2.bitwise_not(mask)
|
|
frame = cv2.bitwise_and(frame, frame, mask=mask)
|
|
return frame
|
|
|
|
|
|
class GoalFinder(object):
|
|
|
|
def __init__(self, hsv_lower, hsv_upper):
|
|
self.hsv_lower = tuple(hsv_lower)
|
|
self.hsv_upper = tuple(hsv_upper)
|
|
|
|
def primary_mask(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
thr = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
|
thr = cv2.erode(thr, None, iterations=2)
|
|
thr = cv2.dilate(thr, None, iterations=2)
|
|
return thr
|
|
|
|
def goal_similarity(self, contour):
|
|
hull = cv2.convexHull(contour).squeeze()
|
|
len_h = cv2.arcLength(hull, True)
|
|
|
|
# Supporting points of goal contour should lie close to its
|
|
# enclosing convex hull
|
|
distances = np.array([[np.sqrt(np.sum(point**2)) for point in node]
|
|
for node in contour - hull])
|
|
min_dist = np.array([d.min() for d in distances])
|
|
shape_sim = min_dist.sum() / len_h
|
|
|
|
# Wild assumption that the area of the goal is rather small
|
|
# compared to its enclosing convex hull
|
|
area_c = cv2.contourArea(contour)
|
|
area_h = cv2.contourArea(hull)
|
|
|
|
area_sim = area_c / area_h
|
|
|
|
# Final similarity score is just the sum of both
|
|
final_score = shape_sim + area_sim
|
|
print('Goal candidate:', shape_sim, area_sim, final_score)
|
|
return final_score
|
|
|
|
def find(self, frame):
|
|
thr = self.primary_mask(frame)
|
|
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)
|
|
cnts.sort(key=cv2.contourArea, reverse=True)
|
|
top_x = 6
|
|
cnts = cnts[:top_x]
|
|
|
|
epsilon = [0.01 * cv2.arcLength(cnt, True) for cnt in cnts]
|
|
|
|
# Approximate resulting contours with simpler lines
|
|
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
|
for cnt, eps in zip(cnts, epsilon)]
|
|
|
|
# Goal needs normally 8 points for perfect approximation
|
|
# But with 6 can also be approximated
|
|
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
|
and not cv2.isContourConvex(cnt)]
|
|
|
|
if not good_cnts:
|
|
return None
|
|
|
|
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
|
|
best = min(similarities)
|
|
print('Final goal score:', best)
|
|
print()
|
|
if best > 0.45:
|
|
return None
|
|
# Find the contour with the shape closest to that of the goal
|
|
goal = good_cnts[similarities.index(best)]
|
|
return goal
|
|
|
|
def left_right_post(self, contour):
|
|
return contour[:,0].min(), contour[:,0].max()
|
|
|
|
def goal_center(self, contour):
|
|
l, r = self.left_right_post(contour)
|
|
print('Left goal post:', l,
|
|
'Right goal post:', r)
|
|
return (l + r) / 2
|
|
|
|
def draw(self, frame, goal):
|
|
if goal is not None:
|
|
frame = frame.copy()
|
|
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
|
|
return frame
|
|
|
|
|
|
class BallFinder(object):
|
|
|
|
def __init__(self, hsv_lower, hsv_upper, min_radius=0.02):
|
|
|
|
self.hsv_lower = tuple(hsv_lower)
|
|
self.hsv_upper = tuple(hsv_upper)
|
|
self.min_radius = min_radius
|
|
self.history = deque(maxlen=64)
|
|
|
|
def primary_mask(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
|
return mask
|
|
|
|
def find(self, frame):
|
|
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
|
|
|
# construct a mask for the color, then perform a series of
|
|
# dilations and erosions to remove any small blobs left in the mask ?
|
|
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
|
|
# mask = cv2.erode(mask, None, iterations=2)
|
|
# mask = cv2.dilate(mask, None, iterations=2)
|
|
|
|
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
|
|
cv2.CHAIN_APPROX_SIMPLE)[-2]
|
|
|
|
if len(cnts) == 0:
|
|
print('No red contours')
|
|
self.history.appendleft(None)
|
|
return None
|
|
|
|
# find the largest contour in the mask, then use it to compute
|
|
# the minimum enclosing circle and centroid
|
|
c = max(cnts, key=cv2.contourArea)
|
|
(x, y), radius = cv2.minEnclosingCircle(c)
|
|
|
|
min_radius_abs = self.min_radius * frame.shape[0]
|
|
|
|
if radius < min_radius_abs:
|
|
print('Radius:', radius, 'Min radius:', min_radius_abs)
|
|
self.history.appendleft(None)
|
|
return None
|
|
|
|
M = cv2.moments(c)
|
|
try:
|
|
center = int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])
|
|
except ZeroDivisionError:
|
|
# It's weird but happened yeah
|
|
self.history.append(None)
|
|
return None
|
|
self.history.appendleft((center, int(radius)))
|
|
print('Ball:', center, radius)
|
|
return center, int(radius)
|
|
|
|
def draw(self, frame, ball):
|
|
if ball is not None:
|
|
frame = frame.copy()
|
|
center, radius = ball
|
|
cv2.circle(frame, center, radius, (255, 255, 0), 1)
|
|
return frame
|
|
# cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
|
|
|
# loop over the set of tracked points
|
|
# for i in range(1, len(self.history)):
|
|
# if either of the tracked points are None, ignore them
|
|
# if self.history[i - 1] is None or self.history[i] is None:
|
|
# continue
|
|
# otherwise, compute the thickness of the line and
|
|
# draw the connecting lines
|
|
# center_now = self.history[i - 1][0]
|
|
# center_prev = self.history[i][0]
|
|
# thickness = int((64 / (i + 1))**0.5 * 2.5)
|
|
# cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
|