finalizing merge

This commit is contained in:
Pavel Lutskov
2019-02-04 15:22:12 +01:00
3 changed files with 174 additions and 0 deletions

120
script/cartesian_controller.py Executable file
View File

@@ -0,0 +1,120 @@
#! /usr/bin/env python
import os
import rospy
import numpy as np
import sys
from naoqi import ALProxy
import motion
motionProxy = 0
def get_transform(joint):
frame = motion.FRAME_TORSO
useSensorValues = True
result = motionProxy.getTransform(joint,frame,useSensorValues)
result = np.matrix(result)
print result
result = np.reshape(result, (4,4))
print result
return result
def cartesian_position(joint):
print 'function'
frame = motion.FRAME_TORSO
useSensorValues = True
result = motionProxy.getPosition(joint, frame, useSensorValues)
#print result
return np.array(result[:3])
def jacobian():
# get current positions/ accordint to control figure these values should actually come from the
# integration step in the previous first control loop
end_position = cartesian_position('LArm')
shoulder_position = cartesian_position('LShoulderPitch')
bicep_position = cartesian_position('LShoulderRoll')
elbow_position = cartesian_position('LElbowYaw')
forearm_position = cartesian_position('LElbowRoll')
# get transformed rotation axes, transformation to torso frame
x_axis = np.array([[1, 0, 0, 1]]).T
y_axis = np.array([[0, 1, 0, 1]]).T
z_axis = np.array([[0, 0, 1, 1]]).T
shoulder_axis = get_transform('LShoulderPitch').dot(y_axis)
bicep_axis = get_transform('LShoulderRoll').dot(z_axis)
elbow_axis = get_transform('LElbowYaw').dot(x_axis)
forearm_axis = get_transform('LElbowRoll').dot(z_axis)
# get basis vectors of jacobian
shoulder_basis = np.cross(shoulder_axis[:3].flatten(), end_position - shoulder_position)
bicep_basis = np.cross(bicep_axis[:3].flatten(), end_position - bicep_position)
elbow_basis = np.cross(elbow_axis[:3].flatten(), end_position - elbow_position)
forearm_basis = np.cross(forearm_axis[:3].flatten(), end_position - forearm_position)
# build jacobian matrix
jacobian = np.concatenate([shoulder_basis, bicep_basis, elbow_basis, forearm_basis], axis=0).T
return jacobian
def pseudo_inverse(jacobian):
return np.linalg.pinv(jacobian)
def reference_generator(p_d)
# calculate jacobian
# use jacobian to compute desired joint speed
# integrate over desired speed to get desired joint position
# return desired joint position and speed
return
def movement(e)
# scale joint states with matrix K
# add desired joint speed
# move robot arm
return
if __name__ == '__main__':
motionProxy = ALProxy("ALMotion", os.environ['NAO_IP'], 9559)
jacob = jacobian()
print jacob
jacob = pseudo_inverse(jacob)
print(jacob)
# given new desired coordinates
e = 1;
"""
while e bigger some value
# run reference generator to get desired joint postion and speed
# subtract current joint states
# movement
"""
#rospy.init_node('cartesian_controller')
#rospy.spin()