removed unnecessary redundancy from optimizers
This commit is contained in:
102
main.py
102
main.py
@@ -8,14 +8,21 @@ from time import time
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
mpl.use('TkAgg')
|
mpl.use('TkAgg') # fixes my macOS bug
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
P = 0.1
|
P = 0.1
|
||||||
ALPHA = 0.90
|
ALPHA = 0.90
|
||||||
EPSILON = 1e-8 # Convergence criterium
|
EPSILON = 1e-12 # Convergence criterium
|
||||||
|
A2 = np.array([ # Action index to action mapping
|
||||||
|
[-1, 0], # Up
|
||||||
|
[ 1, 0], # Down
|
||||||
|
[ 0, -1], # Left
|
||||||
|
[ 0, 1], # Right
|
||||||
|
[ 0, 0], # Idle
|
||||||
|
])
|
||||||
|
|
||||||
# Global state
|
# Global state
|
||||||
MAZE = None # Map of the environment
|
MAZE = None # Map of the environment
|
||||||
@@ -25,15 +32,7 @@ U_OF_X = None # The allowed action space matrix representation
|
|||||||
PW_OF_X_U = None # The probability distribution of disturbance
|
PW_OF_X_U = None # The probability distribution of disturbance
|
||||||
G1_X = None # The cost function vector representation (depends only on state)
|
G1_X = None # The cost function vector representation (depends only on state)
|
||||||
G2_X = None # The second cost function vector representation
|
G2_X = None # The second cost function vector representation
|
||||||
F_X_U_W = None # The state function
|
F_X_U_W = None # The System Equation
|
||||||
|
|
||||||
A2 = np.array([
|
|
||||||
[-1, 0],
|
|
||||||
[1, 0],
|
|
||||||
[0, -1],
|
|
||||||
[0, 1],
|
|
||||||
[0, 0]
|
|
||||||
])
|
|
||||||
|
|
||||||
|
|
||||||
def h_matrix(j, g):
|
def h_matrix(j, g):
|
||||||
@@ -50,29 +49,30 @@ def _valid_target(target):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def init_global(maze_file):
|
def init_global(maze_filename):
|
||||||
global MAZE, SN, S_TO_IJ
|
global MAZE, SN, S_TO_IJ
|
||||||
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
|
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
|
||||||
|
|
||||||
# Basic maze structure initialization
|
# Basic maze structure initialization
|
||||||
MAZE = np.genfromtxt(
|
MAZE = np.genfromtxt(
|
||||||
maze_file,
|
maze_filename,
|
||||||
dtype=str,
|
dtype=str,
|
||||||
)
|
)
|
||||||
state_mask = (MAZE != '1')
|
state_mask = (MAZE != '1')
|
||||||
|
|
||||||
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
|
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
|
||||||
SN = len(S_TO_IJ)
|
SN = len(S_TO_IJ)
|
||||||
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
|
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
|
||||||
ij_to_s[state_mask] = np.arange(SN)
|
ij_to_s[state_mask] = np.arange(SN)
|
||||||
|
|
||||||
# One step cost functions initialization
|
# One step cost functions initialization
|
||||||
maze_cost = np.zeros(MAZE.shape)
|
maze_cost = np.zeros(MAZE.shape, dtype=np.float64)
|
||||||
maze_cost[MAZE == '1'] = np.nan
|
maze_cost[MAZE == '1'] = np.nan
|
||||||
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
|
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
|
||||||
maze_cost[MAZE == 'T'] = 50
|
maze_cost[MAZE == 'T'] = 50
|
||||||
maze_cost[MAZE == 'G'] = -1
|
maze_cost[MAZE == 'G'] = -1
|
||||||
G1_X = maze_cost.copy()[state_mask]
|
G1_X = maze_cost.copy()[state_mask]
|
||||||
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True
|
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == False
|
||||||
G2_X = maze_cost.copy()[state_mask]
|
G2_X = maze_cost.copy()[state_mask]
|
||||||
|
|
||||||
# Actual environment modelling
|
# Actual environment modelling
|
||||||
@@ -84,15 +84,15 @@ def init_global(maze_file):
|
|||||||
for iu, u in enumerate(A2):
|
for iu, u in enumerate(A2):
|
||||||
if _valid_target(x + u):
|
if _valid_target(x + u):
|
||||||
U_OF_X[ix, iu] = True
|
U_OF_X[ix, iu] = True
|
||||||
if iu in (0, 1):
|
if iu in (0, 1): # (Up, Down)
|
||||||
possible_iw = [2, 3]
|
possible_iw = [2, 3] # [Left, Right]
|
||||||
elif iu in (2, 3):
|
elif iu in (2, 3): # (Left, Right)
|
||||||
possible_iw = [0, 1]
|
possible_iw = [0, 1] # [Up, Down]
|
||||||
for iw in possible_iw:
|
for iw in possible_iw:
|
||||||
if _valid_target(x + u + A2[iw]):
|
if _valid_target(x + u + A2[iw]):
|
||||||
PW_OF_X_U[ix, iu, iw] = P
|
PW_OF_X_U[ix, iu, iw] = P
|
||||||
F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
|
F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
|
||||||
# IDLE w is always possible
|
# Idle w is always possible
|
||||||
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
|
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
|
||||||
F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
|
F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
|
||||||
|
|
||||||
@@ -104,8 +104,8 @@ def plot_j_policy_on_maze(j, policy):
|
|||||||
cmap.set_bad(color='black')
|
cmap.set_bad(color='black')
|
||||||
plt.imshow(heatmap, cmap=cmap)
|
plt.imshow(heatmap, cmap=cmap)
|
||||||
plt.colorbar()
|
plt.colorbar()
|
||||||
plt.quiver(S_TO_IJ[:,1], S_TO_IJ[:,0],
|
# quiver has some weird behavior, the arrow y component must be flipped
|
||||||
A2[policy, 1], -A2[policy, 0])
|
plt.quiver(S_TO_IJ[:, 1], S_TO_IJ[:, 0], A2[policy, 1], -A2[policy, 0])
|
||||||
plt.gca().get_xaxis().set_visible(False)
|
plt.gca().get_xaxis().set_visible(False)
|
||||||
plt.gca().get_yaxis().set_visible(False)
|
plt.gca().get_yaxis().set_visible(False)
|
||||||
|
|
||||||
@@ -113,7 +113,7 @@ def plot_j_policy_on_maze(j, policy):
|
|||||||
def plot_cost_history(hist):
|
def plot_cost_history(hist):
|
||||||
error = np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
|
error = np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
|
||||||
plt.xlabel('Number of iterations')
|
plt.xlabel('Number of iterations')
|
||||||
plt.ylabel('Cost function error')
|
plt.ylabel('Cost function RMSE')
|
||||||
plt.plot(error)
|
plt.plot(error)
|
||||||
|
|
||||||
|
|
||||||
@@ -127,7 +127,8 @@ def _evaluate_policy(policy, g):
|
|||||||
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
|
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
|
||||||
G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
|
G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
|
||||||
|
|
||||||
M = np.zeros((SN, SN)) # Markov matrix for given deterministic policy
|
# Markov matrix for given deterministic policy
|
||||||
|
M = np.zeros((SN, SN), dtype=np.float64)
|
||||||
x_from = [x_ff for x_f, nz in
|
x_from = [x_ff for x_f, nz in
|
||||||
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
|
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
|
||||||
for x_ff in [x_f] * nz]
|
for x_ff in [x_f] * nz]
|
||||||
@@ -135,35 +136,31 @@ def _evaluate_policy(policy, g):
|
|||||||
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
|
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
|
||||||
|
|
||||||
|
|
||||||
def value_iteration(g, return_history=False):
|
def value_iteration(j, g):
|
||||||
j = np.zeros(SN)
|
return _policy_improvement(j, g)
|
||||||
history = [j]
|
|
||||||
while True:
|
|
||||||
# print(j)
|
|
||||||
policy, j_new = _policy_improvement(j, g)
|
|
||||||
j_old = j
|
|
||||||
j = j_new
|
|
||||||
if return_history:
|
|
||||||
history.append(j)
|
|
||||||
if np.abs(j - j_old).max() < EPSILON:
|
|
||||||
break
|
|
||||||
if not return_history:
|
|
||||||
return j, policy
|
|
||||||
else:
|
|
||||||
return np.array(history)
|
|
||||||
|
|
||||||
|
|
||||||
def policy_iteration(g, return_history=False):
|
def policy_iteration(j, g):
|
||||||
j = None
|
policy, _ = _policy_improvement(j, g)
|
||||||
policy = np.full(SN, len(A2) - 1) # starting policy is IDLE
|
j = _evaluate_policy(policy, g)
|
||||||
|
return policy, j
|
||||||
|
|
||||||
|
|
||||||
|
def _terminate(j, j_old):
|
||||||
|
# TODO: DIS
|
||||||
|
return np.abs(j - j_old).max() < EPSILON
|
||||||
|
|
||||||
|
|
||||||
|
def dynamic_programming(optimizer_step, g, return_history=False):
|
||||||
|
j = np.zeros(SN, dtype=np.float64)
|
||||||
history = []
|
history = []
|
||||||
while True:
|
while True:
|
||||||
j_old = j
|
j_old = j
|
||||||
j = _evaluate_policy(policy, g)
|
policy, j = optimizer_step(j, g)
|
||||||
|
if return_history:
|
||||||
history.append(j)
|
history.append(j)
|
||||||
if j_old is not None and np.abs(j - j_old).max() < EPSILON:
|
if _terminate(j, j_old):
|
||||||
break
|
break
|
||||||
policy, _ = _policy_improvement(j, g)
|
|
||||||
if not return_history:
|
if not return_history:
|
||||||
return j, policy
|
return j, policy
|
||||||
else:
|
else:
|
||||||
@@ -190,10 +187,10 @@ if __name__ == '__main__':
|
|||||||
plt.suptitle('DISCOUNT = ' + str(a))
|
plt.suptitle('DISCOUNT = ' + str(a))
|
||||||
i = 1
|
i = 1
|
||||||
for opt in ['Value Iteration', 'Policy Iteration']:
|
for opt in ['Value Iteration', 'Policy Iteration']:
|
||||||
for g in ['g1', 'g2']:
|
for cost in ['g1', 'g2']:
|
||||||
name = ' / '.join([opt, g])
|
name = ' / '.join([opt, cost])
|
||||||
ALPHA = a
|
ALPHA = a
|
||||||
j, policy = optimizers[opt](costs[g])
|
j, policy = dynamic_programming(optimizers[opt], costs[cost])
|
||||||
print(name, j)
|
print(name, j)
|
||||||
plt.subplot(2, 2, i)
|
plt.subplot(2, 2, i)
|
||||||
plt.gca().set_title(name)
|
plt.gca().set_title(name)
|
||||||
@@ -205,11 +202,12 @@ if __name__ == '__main__':
|
|||||||
plt.figure()
|
plt.figure()
|
||||||
plt.suptitle(opt)
|
plt.suptitle(opt)
|
||||||
i = 1
|
i = 1
|
||||||
for g in ['g1', 'g2']:
|
for cost in ['g1', 'g2']:
|
||||||
for a in [0.9, 0.8, 0.7]:
|
for a in [0.9, 0.8, 0.7]:
|
||||||
name = 'Cost: {}, discount: {}'.format(g, a)
|
name = 'Cost: {}, discount: {}'.format(cost, a)
|
||||||
ALPHA = a
|
ALPHA = a
|
||||||
history = optimizers[opt](costs[g], return_history=True)
|
history = dynamic_programming(optimizers[opt], costs[cost],
|
||||||
|
return_history=True)
|
||||||
plt.subplot(2, 3, i)
|
plt.subplot(2, 3, i)
|
||||||
plt.gca().set_title(name)
|
plt.gca().set_title(name)
|
||||||
plot_cost_history(history)
|
plot_cost_history(history)
|
||||||
|
|||||||
Reference in New Issue
Block a user