deleted unnecessary stuff, more vectorizations
This commit is contained in:
147
main.py
147
main.py
@@ -19,15 +19,13 @@ EPSILON = 1e-8 # Convergence criterium
|
||||
|
||||
# Global state
|
||||
MAZE = None # Map of the environment
|
||||
STATE_MASK = None # Fields of maze belonging to state space
|
||||
S_TO_IJ = None # Mapping of state vector to coordinates
|
||||
IJ_TO_S = None # Mapping of coordinates to state vector
|
||||
SN = None # Number of states
|
||||
U_OF_X = None # The allowed action space matrix representation
|
||||
PW_OF_X_U = None # The probability distribution of disturbance
|
||||
G1_X = None # The cost function vector representation (depends only on state)
|
||||
G2_X = None # The second cost function vector representation
|
||||
F_X_U_W = None # The state function
|
||||
SN = None # Number of states
|
||||
|
||||
A2 = np.array([
|
||||
[-1, 0],
|
||||
@@ -37,29 +35,6 @@ A2 = np.array([
|
||||
[0, 0]
|
||||
])
|
||||
|
||||
ACTIONS = {
|
||||
'UP': (-1, 0),
|
||||
'DOWN': (1, 0),
|
||||
'LEFT': (0, -1),
|
||||
'RIGHT': (0, 1),
|
||||
'IDLE': (0, 0)
|
||||
}
|
||||
|
||||
|
||||
def _ij_to_s(ij):
|
||||
return np.argwhere(np.all(ij == S_TO_IJ, axis=1)).flatten()[0]
|
||||
|
||||
|
||||
# TODO: for all x and u in one go
|
||||
def h_function(x, u, j, g):
|
||||
"""Return E_pi_w[g(x, pi(x), w) + alpha*J(f(x, pi(x), w))]."""
|
||||
pw = pw_of_x_u(x, u)
|
||||
expectation = sum(
|
||||
pw[w] * (g(x, u, w) + ALPHA*j[_ij_to_s(f(x, u, w))])
|
||||
for w in pw
|
||||
)
|
||||
return expectation
|
||||
|
||||
|
||||
def h_matrix(j, g):
|
||||
result = (PW_OF_X_U * (g[F_X_U_W] + ALPHA*j[F_X_U_W])).sum(axis=2)
|
||||
@@ -67,32 +42,6 @@ def h_matrix(j, g):
|
||||
return result
|
||||
|
||||
|
||||
def f(x, u, w):
|
||||
return _move(_move(x, ACTIONS[u]), ACTIONS[w])
|
||||
|
||||
|
||||
def cost_treasure(x, u, w):
|
||||
xt = f(x, u, w)
|
||||
options = {
|
||||
'T': 50,
|
||||
'G': -1,
|
||||
}
|
||||
return options.get(MAZE[xt], 0)
|
||||
|
||||
|
||||
def cost_energy(x, u, w):
|
||||
xt = f(x, u, w)
|
||||
options = {
|
||||
'T': 50,
|
||||
'G': 0
|
||||
}
|
||||
return options.get(MAZE[xt], 1)
|
||||
|
||||
|
||||
def _move(start, move):
|
||||
return start[0] + move[0], start[1] + move[1]
|
||||
|
||||
|
||||
def _valid_target(target):
|
||||
return (
|
||||
0 <= target[0] < MAZE.shape[0] and
|
||||
@@ -101,8 +50,8 @@ def _valid_target(target):
|
||||
)
|
||||
|
||||
|
||||
def _init_global(maze_file):
|
||||
global MAZE, STATE_MASK, SN, S_TO_IJ, IJ_TO_S
|
||||
def init_global(maze_file):
|
||||
global MAZE, SN, S_TO_IJ
|
||||
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
|
||||
|
||||
# Basic maze structure initialization
|
||||
@@ -110,11 +59,11 @@ def _init_global(maze_file):
|
||||
maze_file,
|
||||
dtype=str,
|
||||
)
|
||||
STATE_MASK = (MAZE != '1')
|
||||
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[STATE_MASK]
|
||||
state_mask = (MAZE != '1')
|
||||
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
|
||||
SN = len(S_TO_IJ)
|
||||
IJ_TO_S = np.zeros(MAZE.shape, dtype=np.int32)
|
||||
IJ_TO_S[STATE_MASK] = np.arange(SN)
|
||||
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
|
||||
ij_to_s[state_mask] = np.arange(SN)
|
||||
|
||||
# One step cost functions initialization
|
||||
maze_cost = np.zeros(MAZE.shape)
|
||||
@@ -122,13 +71,13 @@ def _init_global(maze_file):
|
||||
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
|
||||
maze_cost[MAZE == 'T'] = 50
|
||||
maze_cost[MAZE == 'G'] = -1
|
||||
G1_X = maze_cost.copy()[STATE_MASK]
|
||||
G1_X = maze_cost.copy()[state_mask]
|
||||
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True
|
||||
G2_X = maze_cost.copy()[STATE_MASK]
|
||||
G2_X = maze_cost.copy()[state_mask]
|
||||
|
||||
# Actual environment modelling
|
||||
U_OF_X = np.zeros((SN, len(A2)), dtype=np.bool)
|
||||
PW_OF_X_U = np.zeros((SN, len(A2), len(A2)))
|
||||
PW_OF_X_U = np.zeros((SN, len(A2), len(A2)), dtype=np.float64)
|
||||
F_X_U_W = np.zeros(PW_OF_X_U.shape, dtype=np.int32)
|
||||
|
||||
for ix, x in enumerate(S_TO_IJ):
|
||||
@@ -142,53 +91,15 @@ def _init_global(maze_file):
|
||||
for iw in possible_iw:
|
||||
if _valid_target(x + u + A2[iw]):
|
||||
PW_OF_X_U[ix, iu, iw] = P
|
||||
F_X_U_W[ix, iu, iw] = IJ_TO_S[tuple(x + u + A2[iw])]
|
||||
F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
|
||||
# IDLE w is always possible
|
||||
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
|
||||
F_X_U_W[ix, iu, -1] = IJ_TO_S[tuple(x + u)]
|
||||
|
||||
|
||||
def u_of_x(x):
|
||||
"""Return a list of allowed actions for the given state x."""
|
||||
return [u for u in ACTIONS if _valid_target(_move(x, ACTIONS[u]))]
|
||||
|
||||
|
||||
def pw_of_x_u(x, u):
|
||||
"""Calculate probabilities of disturbances given state and action.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : tuple of ints
|
||||
The state coordinate
|
||||
(it is up to user to ensure this is a valid state).
|
||||
u : str
|
||||
The name of the action (again, up to the user to ensure validity).
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
A mapping of valid disturbances to their probabilities.
|
||||
|
||||
"""
|
||||
if u in ('LEFT', 'RIGHT'):
|
||||
possible_w = ('UP', 'IDLE', 'DOWN')
|
||||
elif u in ('UP', 'DOWN'):
|
||||
possible_w = ('LEFT', 'IDLE', 'RIGHT')
|
||||
else: # I assume that the IDLE action is deterministic
|
||||
possible_w = ('IDLE',)
|
||||
|
||||
allowed_w = [
|
||||
w for w in possible_w if
|
||||
_valid_target(f(x, u, w))
|
||||
]
|
||||
probs = {w: P for w in allowed_w if w != 'IDLE'}
|
||||
probs['IDLE'] = 1 - sum(probs.values())
|
||||
return probs
|
||||
F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
|
||||
|
||||
|
||||
def plot_j_policy_on_maze(j, policy):
|
||||
heatmap = np.ones(MAZE.shape) * np.nan # Ugly
|
||||
heatmap[STATE_MASK] = j # Even uglier
|
||||
heatmap = np.full(MAZE.shape, np.nan)
|
||||
heatmap[S_TO_IJ[:,0], S_TO_IJ[:,1]] = j
|
||||
cmap = mpl.cm.get_cmap('coolwarm')
|
||||
cmap.set_bad(color='black')
|
||||
plt.imshow(heatmap, cmap=cmap)
|
||||
@@ -200,7 +111,7 @@ def plot_j_policy_on_maze(j, policy):
|
||||
|
||||
|
||||
def plot_cost_history(hist):
|
||||
error = [((h - hist[-1])**2).sum()**0.5 for h in hist[:-1]]
|
||||
error = np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
|
||||
plt.xlabel('Number of iterations')
|
||||
plt.ylabel('Cost function error')
|
||||
plt.plot(error)
|
||||
@@ -208,28 +119,19 @@ def plot_cost_history(hist):
|
||||
|
||||
def _policy_improvement(j, g):
|
||||
h_mat = h_matrix(j, g)
|
||||
return np.argmin(h_mat, axis=1), h_mat.min(axis=1)
|
||||
return h_mat.argmin(axis=1), h_mat.min(axis=1)
|
||||
|
||||
|
||||
def _evaluate_policy(policy, g):
|
||||
pw_pi = PW_OF_X_U[np.arange(SN), policy] # p(w) given policy for all x
|
||||
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x))
|
||||
G = (pw_pi * g[targs]).sum(axis=1)
|
||||
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
|
||||
G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
|
||||
|
||||
M = np.zeros((SN, SN)) # Markov matrix for given determ policy
|
||||
M = np.zeros((SN, SN)) # Markov matrix for given deterministic policy
|
||||
x_from = [x_ff for x_f, nz in
|
||||
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
|
||||
for x_ff in [x_f] * nz]
|
||||
M[x_from, targs[pw_pi > 0]] = pw_pi[pw_pi > 0]
|
||||
# M[np.arange(SN), F_X_U_W[PW_OF_X_U > 0]] = PW_OF_X_U[PW_OF_X_U > 0]
|
||||
# for x, u in zip(S_TO_IJ, policy):
|
||||
# pw = pw_of_x_u(x, u)
|
||||
# G.append(sum(pw[w] * g(x, u, w) for w in pw))
|
||||
# targets = [(_ij_to_s(f(x, u, w)), pw[w]) for w in pw]
|
||||
# iox = _ij_to_s(x)
|
||||
# for t, pww in targets:
|
||||
# M[iox, t] = pww
|
||||
# G = np.array(G)
|
||||
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
|
||||
|
||||
|
||||
@@ -248,24 +150,24 @@ def value_iteration(g, return_history=False):
|
||||
if not return_history:
|
||||
return j, policy
|
||||
else:
|
||||
return history
|
||||
return np.array(history)
|
||||
|
||||
|
||||
def policy_iteration(g, return_history=False):
|
||||
j = None
|
||||
policy = np.full(SN, len(A2) - 1)
|
||||
policy = np.full(SN, len(A2) - 1) # starting policy is IDLE
|
||||
history = []
|
||||
while True:
|
||||
j_old = j
|
||||
j = _evaluate_policy(policy, g)
|
||||
history.append(j)
|
||||
if j_old is not None and max(abs(j - j_old)) < EPSILON:
|
||||
if j_old is not None and np.abs(j - j_old).max() < EPSILON:
|
||||
break
|
||||
policy, _ = _policy_improvement(j, g)
|
||||
if not return_history:
|
||||
return j, policy
|
||||
else:
|
||||
return history
|
||||
return np.array(history)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@@ -274,10 +176,9 @@ if __name__ == '__main__':
|
||||
ap.add_argument('maze_file', help='Path to maze file')
|
||||
args = ap.parse_args()
|
||||
|
||||
# start = time()
|
||||
# Initialization
|
||||
start = time()
|
||||
_init_global(args.maze_file)
|
||||
init_global(args.maze_file)
|
||||
|
||||
# J / policy for both algorithms for both cost functions for 3 alphas
|
||||
costs = {'g1': G1_X, 'g2': G2_X}
|
||||
|
||||
Reference in New Issue
Block a user