removed unnecessary redundancy from optimizers
This commit is contained in:
104
main.py
104
main.py
@@ -8,14 +8,21 @@ from time import time
|
||||
import numpy as np
|
||||
|
||||
import matplotlib as mpl
|
||||
mpl.use('TkAgg')
|
||||
mpl.use('TkAgg') # fixes my macOS bug
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
P = 0.1
|
||||
ALPHA = 0.90
|
||||
EPSILON = 1e-8 # Convergence criterium
|
||||
EPSILON = 1e-12 # Convergence criterium
|
||||
A2 = np.array([ # Action index to action mapping
|
||||
[-1, 0], # Up
|
||||
[ 1, 0], # Down
|
||||
[ 0, -1], # Left
|
||||
[ 0, 1], # Right
|
||||
[ 0, 0], # Idle
|
||||
])
|
||||
|
||||
# Global state
|
||||
MAZE = None # Map of the environment
|
||||
@@ -25,15 +32,7 @@ U_OF_X = None # The allowed action space matrix representation
|
||||
PW_OF_X_U = None # The probability distribution of disturbance
|
||||
G1_X = None # The cost function vector representation (depends only on state)
|
||||
G2_X = None # The second cost function vector representation
|
||||
F_X_U_W = None # The state function
|
||||
|
||||
A2 = np.array([
|
||||
[-1, 0],
|
||||
[1, 0],
|
||||
[0, -1],
|
||||
[0, 1],
|
||||
[0, 0]
|
||||
])
|
||||
F_X_U_W = None # The System Equation
|
||||
|
||||
|
||||
def h_matrix(j, g):
|
||||
@@ -50,29 +49,30 @@ def _valid_target(target):
|
||||
)
|
||||
|
||||
|
||||
def init_global(maze_file):
|
||||
def init_global(maze_filename):
|
||||
global MAZE, SN, S_TO_IJ
|
||||
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
|
||||
|
||||
# Basic maze structure initialization
|
||||
MAZE = np.genfromtxt(
|
||||
maze_file,
|
||||
maze_filename,
|
||||
dtype=str,
|
||||
)
|
||||
state_mask = (MAZE != '1')
|
||||
|
||||
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
|
||||
SN = len(S_TO_IJ)
|
||||
ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
|
||||
ij_to_s[state_mask] = np.arange(SN)
|
||||
|
||||
# One step cost functions initialization
|
||||
maze_cost = np.zeros(MAZE.shape)
|
||||
maze_cost = np.zeros(MAZE.shape, dtype=np.float64)
|
||||
maze_cost[MAZE == '1'] = np.nan
|
||||
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
|
||||
maze_cost[MAZE == 'T'] = 50
|
||||
maze_cost[MAZE == 'G'] = -1
|
||||
G1_X = maze_cost.copy()[state_mask]
|
||||
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True
|
||||
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == False
|
||||
G2_X = maze_cost.copy()[state_mask]
|
||||
|
||||
# Actual environment modelling
|
||||
@@ -84,28 +84,28 @@ def init_global(maze_file):
|
||||
for iu, u in enumerate(A2):
|
||||
if _valid_target(x + u):
|
||||
U_OF_X[ix, iu] = True
|
||||
if iu in (0, 1):
|
||||
possible_iw = [2, 3]
|
||||
elif iu in (2, 3):
|
||||
possible_iw = [0, 1]
|
||||
if iu in (0, 1): # (Up, Down)
|
||||
possible_iw = [2, 3] # [Left, Right]
|
||||
elif iu in (2, 3): # (Left, Right)
|
||||
possible_iw = [0, 1] # [Up, Down]
|
||||
for iw in possible_iw:
|
||||
if _valid_target(x + u + A2[iw]):
|
||||
PW_OF_X_U[ix, iu, iw] = P
|
||||
F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
|
||||
# IDLE w is always possible
|
||||
# Idle w is always possible
|
||||
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
|
||||
F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
|
||||
|
||||
|
||||
def plot_j_policy_on_maze(j, policy):
|
||||
heatmap = np.full(MAZE.shape, np.nan)
|
||||
heatmap[S_TO_IJ[:,0], S_TO_IJ[:,1]] = j
|
||||
heatmap[S_TO_IJ[:, 0], S_TO_IJ[:, 1]] = j
|
||||
cmap = mpl.cm.get_cmap('coolwarm')
|
||||
cmap.set_bad(color='black')
|
||||
plt.imshow(heatmap, cmap=cmap)
|
||||
plt.colorbar()
|
||||
plt.quiver(S_TO_IJ[:,1], S_TO_IJ[:,0],
|
||||
A2[policy, 1], -A2[policy, 0])
|
||||
# quiver has some weird behavior, the arrow y component must be flipped
|
||||
plt.quiver(S_TO_IJ[:, 1], S_TO_IJ[:, 0], A2[policy, 1], -A2[policy, 0])
|
||||
plt.gca().get_xaxis().set_visible(False)
|
||||
plt.gca().get_yaxis().set_visible(False)
|
||||
|
||||
@@ -113,7 +113,7 @@ def plot_j_policy_on_maze(j, policy):
|
||||
def plot_cost_history(hist):
|
||||
error = np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
|
||||
plt.xlabel('Number of iterations')
|
||||
plt.ylabel('Cost function error')
|
||||
plt.ylabel('Cost function RMSE')
|
||||
plt.plot(error)
|
||||
|
||||
|
||||
@@ -127,7 +127,8 @@ def _evaluate_policy(policy, g):
|
||||
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
|
||||
G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
|
||||
|
||||
M = np.zeros((SN, SN)) # Markov matrix for given deterministic policy
|
||||
# Markov matrix for given deterministic policy
|
||||
M = np.zeros((SN, SN), dtype=np.float64)
|
||||
x_from = [x_ff for x_f, nz in
|
||||
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
|
||||
for x_ff in [x_f] * nz]
|
||||
@@ -135,35 +136,31 @@ def _evaluate_policy(policy, g):
|
||||
return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
|
||||
|
||||
|
||||
def value_iteration(g, return_history=False):
|
||||
j = np.zeros(SN)
|
||||
history = [j]
|
||||
while True:
|
||||
# print(j)
|
||||
policy, j_new = _policy_improvement(j, g)
|
||||
j_old = j
|
||||
j = j_new
|
||||
if return_history:
|
||||
history.append(j)
|
||||
if np.abs(j - j_old).max() < EPSILON:
|
||||
break
|
||||
if not return_history:
|
||||
return j, policy
|
||||
else:
|
||||
return np.array(history)
|
||||
def value_iteration(j, g):
|
||||
return _policy_improvement(j, g)
|
||||
|
||||
|
||||
def policy_iteration(g, return_history=False):
|
||||
j = None
|
||||
policy = np.full(SN, len(A2) - 1) # starting policy is IDLE
|
||||
def policy_iteration(j, g):
|
||||
policy, _ = _policy_improvement(j, g)
|
||||
j = _evaluate_policy(policy, g)
|
||||
return policy, j
|
||||
|
||||
|
||||
def _terminate(j, j_old):
|
||||
# TODO: DIS
|
||||
return np.abs(j - j_old).max() < EPSILON
|
||||
|
||||
|
||||
def dynamic_programming(optimizer_step, g, return_history=False):
|
||||
j = np.zeros(SN, dtype=np.float64)
|
||||
history = []
|
||||
while True:
|
||||
j_old = j
|
||||
j = _evaluate_policy(policy, g)
|
||||
policy, j = optimizer_step(j, g)
|
||||
if return_history:
|
||||
history.append(j)
|
||||
if j_old is not None and np.abs(j - j_old).max() < EPSILON:
|
||||
if _terminate(j, j_old):
|
||||
break
|
||||
policy, _ = _policy_improvement(j, g)
|
||||
if not return_history:
|
||||
return j, policy
|
||||
else:
|
||||
@@ -190,10 +187,10 @@ if __name__ == '__main__':
|
||||
plt.suptitle('DISCOUNT = ' + str(a))
|
||||
i = 1
|
||||
for opt in ['Value Iteration', 'Policy Iteration']:
|
||||
for g in ['g1', 'g2']:
|
||||
name = ' / '.join([opt, g])
|
||||
for cost in ['g1', 'g2']:
|
||||
name = ' / '.join([opt, cost])
|
||||
ALPHA = a
|
||||
j, policy = optimizers[opt](costs[g])
|
||||
j, policy = dynamic_programming(optimizers[opt], costs[cost])
|
||||
print(name, j)
|
||||
plt.subplot(2, 2, i)
|
||||
plt.gca().set_title(name)
|
||||
@@ -205,11 +202,12 @@ if __name__ == '__main__':
|
||||
plt.figure()
|
||||
plt.suptitle(opt)
|
||||
i = 1
|
||||
for g in ['g1', 'g2']:
|
||||
for cost in ['g1', 'g2']:
|
||||
for a in [0.9, 0.8, 0.7]:
|
||||
name = 'Cost: {}, discount: {}'.format(g, a)
|
||||
name = 'Cost: {}, discount: {}'.format(cost, a)
|
||||
ALPHA = a
|
||||
history = optimizers[opt](costs[g], return_history=True)
|
||||
history = dynamic_programming(optimizers[opt], costs[cost],
|
||||
return_history=True)
|
||||
plt.subplot(2, 3, i)
|
||||
plt.gca().set_title(name)
|
||||
plot_cost_history(history)
|
||||
|
||||
Reference in New Issue
Block a user