deleted unnecessary stuff, more vectorizations

This commit is contained in:
2018-12-17 20:37:47 +01:00
parent 29a2d7feb5
commit f390d67b1b

147
main.py
View File

@@ -19,15 +19,13 @@ EPSILON = 1e-8 # Convergence criterium
# Global state # Global state
MAZE = None # Map of the environment MAZE = None # Map of the environment
STATE_MASK = None # Fields of maze belonging to state space
S_TO_IJ = None # Mapping of state vector to coordinates S_TO_IJ = None # Mapping of state vector to coordinates
IJ_TO_S = None # Mapping of coordinates to state vector SN = None # Number of states
U_OF_X = None # The allowed action space matrix representation U_OF_X = None # The allowed action space matrix representation
PW_OF_X_U = None # The probability distribution of disturbance PW_OF_X_U = None # The probability distribution of disturbance
G1_X = None # The cost function vector representation (depends only on state) G1_X = None # The cost function vector representation (depends only on state)
G2_X = None # The second cost function vector representation G2_X = None # The second cost function vector representation
F_X_U_W = None # The state function F_X_U_W = None # The state function
SN = None # Number of states
A2 = np.array([ A2 = np.array([
[-1, 0], [-1, 0],
@@ -37,29 +35,6 @@ A2 = np.array([
[0, 0] [0, 0]
]) ])
ACTIONS = {
'UP': (-1, 0),
'DOWN': (1, 0),
'LEFT': (0, -1),
'RIGHT': (0, 1),
'IDLE': (0, 0)
}
def _ij_to_s(ij):
return np.argwhere(np.all(ij == S_TO_IJ, axis=1)).flatten()[0]
# TODO: for all x and u in one go
def h_function(x, u, j, g):
"""Return E_pi_w[g(x, pi(x), w) + alpha*J(f(x, pi(x), w))]."""
pw = pw_of_x_u(x, u)
expectation = sum(
pw[w] * (g(x, u, w) + ALPHA*j[_ij_to_s(f(x, u, w))])
for w in pw
)
return expectation
def h_matrix(j, g): def h_matrix(j, g):
result = (PW_OF_X_U * (g[F_X_U_W] + ALPHA*j[F_X_U_W])).sum(axis=2) result = (PW_OF_X_U * (g[F_X_U_W] + ALPHA*j[F_X_U_W])).sum(axis=2)
@@ -67,32 +42,6 @@ def h_matrix(j, g):
return result return result
def f(x, u, w):
return _move(_move(x, ACTIONS[u]), ACTIONS[w])
def cost_treasure(x, u, w):
xt = f(x, u, w)
options = {
'T': 50,
'G': -1,
}
return options.get(MAZE[xt], 0)
def cost_energy(x, u, w):
xt = f(x, u, w)
options = {
'T': 50,
'G': 0
}
return options.get(MAZE[xt], 1)
def _move(start, move):
return start[0] + move[0], start[1] + move[1]
def _valid_target(target): def _valid_target(target):
return ( return (
0 <= target[0] < MAZE.shape[0] and 0 <= target[0] < MAZE.shape[0] and
@@ -101,8 +50,8 @@ def _valid_target(target):
) )
def _init_global(maze_file): def init_global(maze_file):
global MAZE, STATE_MASK, SN, S_TO_IJ, IJ_TO_S global MAZE, SN, S_TO_IJ
global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X global U_OF_X, PW_OF_X_U, F_X_U_W, G1_X, G2_X
# Basic maze structure initialization # Basic maze structure initialization
@@ -110,11 +59,11 @@ def _init_global(maze_file):
maze_file, maze_file,
dtype=str, dtype=str,
) )
STATE_MASK = (MAZE != '1') state_mask = (MAZE != '1')
S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[STATE_MASK] S_TO_IJ = np.indices(MAZE.shape).transpose(1, 2, 0)[state_mask]
SN = len(S_TO_IJ) SN = len(S_TO_IJ)
IJ_TO_S = np.zeros(MAZE.shape, dtype=np.int32) ij_to_s = np.zeros(MAZE.shape, dtype=np.int32)
IJ_TO_S[STATE_MASK] = np.arange(SN) ij_to_s[state_mask] = np.arange(SN)
# One step cost functions initialization # One step cost functions initialization
maze_cost = np.zeros(MAZE.shape) maze_cost = np.zeros(MAZE.shape)
@@ -122,13 +71,13 @@ def _init_global(maze_file):
maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0 maze_cost[(MAZE == '0') | (MAZE == 'S')] = 0
maze_cost[MAZE == 'T'] = 50 maze_cost[MAZE == 'T'] = 50
maze_cost[MAZE == 'G'] = -1 maze_cost[MAZE == 'G'] = -1
G1_X = maze_cost.copy()[STATE_MASK] G1_X = maze_cost.copy()[state_mask]
maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True maze_cost[maze_cost < 1] += 1 # assert np.nan < whatever == True
G2_X = maze_cost.copy()[STATE_MASK] G2_X = maze_cost.copy()[state_mask]
# Actual environment modelling # Actual environment modelling
U_OF_X = np.zeros((SN, len(A2)), dtype=np.bool) U_OF_X = np.zeros((SN, len(A2)), dtype=np.bool)
PW_OF_X_U = np.zeros((SN, len(A2), len(A2))) PW_OF_X_U = np.zeros((SN, len(A2), len(A2)), dtype=np.float64)
F_X_U_W = np.zeros(PW_OF_X_U.shape, dtype=np.int32) F_X_U_W = np.zeros(PW_OF_X_U.shape, dtype=np.int32)
for ix, x in enumerate(S_TO_IJ): for ix, x in enumerate(S_TO_IJ):
@@ -142,53 +91,15 @@ def _init_global(maze_file):
for iw in possible_iw: for iw in possible_iw:
if _valid_target(x + u + A2[iw]): if _valid_target(x + u + A2[iw]):
PW_OF_X_U[ix, iu, iw] = P PW_OF_X_U[ix, iu, iw] = P
F_X_U_W[ix, iu, iw] = IJ_TO_S[tuple(x + u + A2[iw])] F_X_U_W[ix, iu, iw] = ij_to_s[tuple(x + u + A2[iw])]
# IDLE w is always possible # IDLE w is always possible
PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum() PW_OF_X_U[ix, iu, -1] = 1 - PW_OF_X_U[ix, iu].sum()
F_X_U_W[ix, iu, -1] = IJ_TO_S[tuple(x + u)] F_X_U_W[ix, iu, -1] = ij_to_s[tuple(x + u)]
def u_of_x(x):
"""Return a list of allowed actions for the given state x."""
return [u for u in ACTIONS if _valid_target(_move(x, ACTIONS[u]))]
def pw_of_x_u(x, u):
"""Calculate probabilities of disturbances given state and action.
Parameters
----------
x : tuple of ints
The state coordinate
(it is up to user to ensure this is a valid state).
u : str
The name of the action (again, up to the user to ensure validity).
Returns
-------
dict
A mapping of valid disturbances to their probabilities.
"""
if u in ('LEFT', 'RIGHT'):
possible_w = ('UP', 'IDLE', 'DOWN')
elif u in ('UP', 'DOWN'):
possible_w = ('LEFT', 'IDLE', 'RIGHT')
else: # I assume that the IDLE action is deterministic
possible_w = ('IDLE',)
allowed_w = [
w for w in possible_w if
_valid_target(f(x, u, w))
]
probs = {w: P for w in allowed_w if w != 'IDLE'}
probs['IDLE'] = 1 - sum(probs.values())
return probs
def plot_j_policy_on_maze(j, policy): def plot_j_policy_on_maze(j, policy):
heatmap = np.ones(MAZE.shape) * np.nan # Ugly heatmap = np.full(MAZE.shape, np.nan)
heatmap[STATE_MASK] = j # Even uglier heatmap[S_TO_IJ[:,0], S_TO_IJ[:,1]] = j
cmap = mpl.cm.get_cmap('coolwarm') cmap = mpl.cm.get_cmap('coolwarm')
cmap.set_bad(color='black') cmap.set_bad(color='black')
plt.imshow(heatmap, cmap=cmap) plt.imshow(heatmap, cmap=cmap)
@@ -200,7 +111,7 @@ def plot_j_policy_on_maze(j, policy):
def plot_cost_history(hist): def plot_cost_history(hist):
error = [((h - hist[-1])**2).sum()**0.5 for h in hist[:-1]] error = np.sqrt(np.square(hist[:-1] - hist[-1]).mean(axis=1))
plt.xlabel('Number of iterations') plt.xlabel('Number of iterations')
plt.ylabel('Cost function error') plt.ylabel('Cost function error')
plt.plot(error) plt.plot(error)
@@ -208,28 +119,19 @@ def plot_cost_history(hist):
def _policy_improvement(j, g): def _policy_improvement(j, g):
h_mat = h_matrix(j, g) h_mat = h_matrix(j, g)
return np.argmin(h_mat, axis=1), h_mat.min(axis=1) return h_mat.argmin(axis=1), h_mat.min(axis=1)
def _evaluate_policy(policy, g): def _evaluate_policy(policy, g):
pw_pi = PW_OF_X_U[np.arange(SN), policy] # p(w) given policy for all x pw_pi = PW_OF_X_U[np.arange(SN), policy] # p(w) given policy for all x
targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x)) targs = F_X_U_W[np.arange(SN), policy] # all f(x, u(x), w(x, u(x)))
G = (pw_pi * g[targs]).sum(axis=1) G = (pw_pi * g[targs]).sum(axis=1) # Expected one-step cost vector
M = np.zeros((SN, SN)) # Markov matrix for given determ policy M = np.zeros((SN, SN)) # Markov matrix for given deterministic policy
x_from = [x_ff for x_f, nz in x_from = [x_ff for x_f, nz in
zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1)) zip(np.arange(SN), np.count_nonzero(pw_pi, axis=1))
for x_ff in [x_f] * nz] for x_ff in [x_f] * nz]
M[x_from, targs[pw_pi > 0]] = pw_pi[pw_pi > 0] M[x_from, targs[pw_pi > 0]] = pw_pi[pw_pi > 0]
# M[np.arange(SN), F_X_U_W[PW_OF_X_U > 0]] = PW_OF_X_U[PW_OF_X_U > 0]
# for x, u in zip(S_TO_IJ, policy):
# pw = pw_of_x_u(x, u)
# G.append(sum(pw[w] * g(x, u, w) for w in pw))
# targets = [(_ij_to_s(f(x, u, w)), pw[w]) for w in pw]
# iox = _ij_to_s(x)
# for t, pww in targets:
# M[iox, t] = pww
# G = np.array(G)
return np.linalg.solve(np.eye(SN) - ALPHA*M, G) return np.linalg.solve(np.eye(SN) - ALPHA*M, G)
@@ -248,24 +150,24 @@ def value_iteration(g, return_history=False):
if not return_history: if not return_history:
return j, policy return j, policy
else: else:
return history return np.array(history)
def policy_iteration(g, return_history=False): def policy_iteration(g, return_history=False):
j = None j = None
policy = np.full(SN, len(A2) - 1) policy = np.full(SN, len(A2) - 1) # starting policy is IDLE
history = [] history = []
while True: while True:
j_old = j j_old = j
j = _evaluate_policy(policy, g) j = _evaluate_policy(policy, g)
history.append(j) history.append(j)
if j_old is not None and max(abs(j - j_old)) < EPSILON: if j_old is not None and np.abs(j - j_old).max() < EPSILON:
break break
policy, _ = _policy_improvement(j, g) policy, _ = _policy_improvement(j, g)
if not return_history: if not return_history:
return j, policy return j, policy
else: else:
return history return np.array(history)
if __name__ == '__main__': if __name__ == '__main__':
@@ -274,10 +176,9 @@ if __name__ == '__main__':
ap.add_argument('maze_file', help='Path to maze file') ap.add_argument('maze_file', help='Path to maze file')
args = ap.parse_args() args = ap.parse_args()
# start = time()
# Initialization # Initialization
start = time() start = time()
_init_global(args.maze_file) init_global(args.maze_file)
# J / policy for both algorithms for both cost functions for 3 alphas # J / policy for both algorithms for both cost functions for 3 alphas
costs = {'g1': G1_X, 'g2': G2_X} costs = {'g1': G1_X, 'g2': G2_X}