after literally hours of pain, keras learns mnist
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -5,3 +5,4 @@ library.h
|
|||||||
run
|
run
|
||||||
compile_commands.json
|
compile_commands.json
|
||||||
build/
|
build/
|
||||||
|
__pycache__/
|
||||||
|
|||||||
161
library.pyx
161
library.pyx
@@ -1,30 +1,30 @@
|
|||||||
cimport numpy as np
|
cimport numpy as np
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import mynet as mn
|
|
||||||
|
from sys import stderr
|
||||||
|
|
||||||
from libc.stdlib cimport malloc
|
from libc.stdlib cimport malloc
|
||||||
from libc.string cimport memcpy
|
from libc.string cimport memcpy
|
||||||
|
|
||||||
|
import nn
|
||||||
|
|
||||||
ctr = []
|
|
||||||
X_train, y_train, X_test, y_test = mn.load_mnist()
|
X_train, y_train, X_test, y_test = nn.load_mnist()
|
||||||
opt = mn.SGDOptimizer(lr=0.1)
|
|
||||||
|
|
||||||
|
|
||||||
cdef extern from "numpy/arrayobject.h":
|
cdef extern from "numpy/arrayobject.h":
|
||||||
void *PyArray_DATA(np.ndarray arr)
|
void *PyArray_DATA(np.ndarray arr)
|
||||||
|
|
||||||
|
|
||||||
ctypedef public struct Dense:
|
ctypedef public struct Weight:
|
||||||
long[2] shape
|
size_t dims
|
||||||
int ownmem
|
long* shape
|
||||||
float* W
|
float* W
|
||||||
float* b
|
|
||||||
|
|
||||||
|
|
||||||
ctypedef public struct Network:
|
ctypedef public struct WeightList:
|
||||||
size_t n_layers;
|
size_t n_weights;
|
||||||
Dense* layers;
|
Weight* weights;
|
||||||
|
|
||||||
|
|
||||||
cdef public char *greeting():
|
cdef public char *greeting():
|
||||||
@@ -35,33 +35,31 @@ cdef public void debug_print(object o):
|
|||||||
print(o)
|
print(o)
|
||||||
|
|
||||||
|
|
||||||
cdef public void predict(
|
cdef public object create_network():
|
||||||
Network* net,
|
return nn.create_mnist_network()
|
||||||
float* X,
|
|
||||||
size_t batch_size
|
|
||||||
):
|
cdef public void set_net_weights(object net, WeightList* wl):
|
||||||
pass
|
net.set_weights(wrap_weight_list(wl))
|
||||||
|
|
||||||
|
|
||||||
cdef public void step_net(
|
cdef public void step_net(
|
||||||
Network* c_net,
|
object net, float* X, float* y, size_t batch_size
|
||||||
float* batch_data,
|
|
||||||
size_t batch_size
|
|
||||||
):
|
):
|
||||||
net = wrap_c_network(c_net)
|
in_shape = (batch_size,) + net.layers[0].input_shape[1:]
|
||||||
cdef size_t in_dim = net.geometry[0]
|
out_shape = (batch_size,) + net.layers[-1].output_shape[1:]
|
||||||
cdef size_t out_dim = net.geometry[-1]
|
X_train = np.asarray(<float[:np.prod(in_shape)]>X).reshape(in_shape)
|
||||||
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
|
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape)
|
||||||
# print(np.argmax(batch[:, in_dim:], axis=1), flush=True)
|
|
||||||
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
|
net.train_on_batch(X_train, y_train)
|
||||||
|
|
||||||
|
|
||||||
cdef public float eval_net(Network* c_net):
|
cdef public float eval_net(object net):
|
||||||
net = wrap_c_network(c_net)
|
return net.evaluate(X_test, y_test, verbose=False)[1]
|
||||||
return net.evaluate(X_test, y_test, 'cls')
|
|
||||||
|
|
||||||
|
|
||||||
cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
|
cdef public void mnist_batch(float* X, float* y, size_t bs,
|
||||||
|
int part, int total):
|
||||||
if total == 0:
|
if total == 0:
|
||||||
X_pool, y_pool = X_train, y_train
|
X_pool, y_pool = X_train, y_train
|
||||||
else:
|
else:
|
||||||
@@ -70,71 +68,66 @@ cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
|
|||||||
y_pool = y_train[part*partsize:(part+1)*partsize]
|
y_pool = y_train[part*partsize:(part+1)*partsize]
|
||||||
|
|
||||||
idx = np.random.choice(len(X_pool), bs, replace=True)
|
idx = np.random.choice(len(X_pool), bs, replace=True)
|
||||||
arr = np.concatenate([X_pool[idx], y_pool[idx]], axis=1)
|
|
||||||
assert arr.flags['C_CONTIGUOUS']
|
X_r = X_pool[idx]
|
||||||
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
|
y_r = y_pool[idx]
|
||||||
|
|
||||||
|
assert X_r.flags['C_CONTIGUOUS']
|
||||||
|
assert y_r.flags['C_CONTIGUOUS']
|
||||||
|
memcpy(X, <float*>PyArray_DATA(X_r), X_r.size * sizeof(float))
|
||||||
|
memcpy(y, <float*>PyArray_DATA(y_r), y_r.size * sizeof(float))
|
||||||
|
|
||||||
|
|
||||||
cdef public void create_c_network(Network* c_net):
|
cdef public void init_weightlist_like(WeightList* wl, object net):
|
||||||
net = create_network()
|
weights = net.get_weights()
|
||||||
c_net.n_layers = len(net.layers)
|
wl.n_weights = len(weights)
|
||||||
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
|
wl.weights = <Weight*>malloc(sizeof(Weight) * wl.n_weights)
|
||||||
for i, l in enumerate(net.layers):
|
for i, w in enumerate(weights):
|
||||||
d0, d1 = l.W.shape
|
sh = np.asarray(w.shape, dtype=long)
|
||||||
c_net.layers[i].shape[0] = d0
|
wl.weights[i].dims = sh.size
|
||||||
c_net.layers[i].shape[1] = d1
|
wl.weights[i].shape = <long*>malloc(sizeof(long) * sh.size)
|
||||||
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
|
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
|
||||||
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
|
|
||||||
assert l.W.flags['C_CONTIGUOUS']
|
assert sh.flags['C_CONTIGUOUS']
|
||||||
assert l.b.flags['C_CONTIGUOUS']
|
memcpy(wl.weights[i].shape, <long*>PyArray_DATA(sh),
|
||||||
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
|
sh.size * sizeof(long))
|
||||||
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
|
|
||||||
c_net.layers[i].ownmem = 1
|
|
||||||
|
|
||||||
|
|
||||||
cdef public void combo_c_net(Network* c_frank, Network* c_nets,
|
cdef public void update_weightlist(WeightList* wl, object net):
|
||||||
size_t num_nets):
|
weights = net.get_weights()
|
||||||
"""ONE-LINER HOW BOUT THAT HUH."""
|
for i, w in enumerate(weights):
|
||||||
combo_net(
|
w = w.astype(np.float32)
|
||||||
wrap_c_network(c_frank),
|
|
||||||
[wrap_c_network(&c_nets[i]) for i in range(num_nets)]
|
assert w.flags['C_CONTIGUOUS']
|
||||||
)
|
memcpy(wl.weights[i].W, <float*>PyArray_DATA(w),
|
||||||
|
w.size * sizeof(float))
|
||||||
|
|
||||||
|
|
||||||
cdef public void be_like(Network* c_dst, Network* c_src):
|
cdef public void combo_weights(
|
||||||
"""Conveniently transform one C network into another."""
|
WeightList* wl_frank, WeightList* wls, size_t num_weights
|
||||||
dst = wrap_c_network(c_dst)
|
):
|
||||||
src = wrap_c_network(c_src)
|
"""Not a one-liner anymore :/"""
|
||||||
dst.be_like(src)
|
alpha = 1. / num_weights
|
||||||
|
frank = wrap_weight_list(wl_frank)
|
||||||
|
for w in frank:
|
||||||
|
w[:] = 0
|
||||||
|
for i in range(num_weights):
|
||||||
|
for wf, ww in zip(frank, wrap_weight_list(&wls[i])):
|
||||||
|
wf += alpha * ww
|
||||||
|
|
||||||
|
|
||||||
cdef object wrap_c_network(Network* c_net):
|
cdef list wrap_weight_list(WeightList* wl):
|
||||||
"""Create a thin wrapper not owning the memory."""
|
weights = []
|
||||||
net = create_network(init=False)
|
for i in range(wl.n_weights):
|
||||||
for i, l in enumerate(net.layers):
|
w_shape = <long[:wl.weights[i].dims]>wl.weights[i].shape
|
||||||
d0, d1 = c_net.layers[i].shape[0], c_net.layers[i].shape[1]
|
w_numel = np.prod(w_shape)
|
||||||
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
|
weights.append(
|
||||||
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
|
np.asarray(<float[:w_numel]>wl.weights[i].W).reshape(w_shape)
|
||||||
return net
|
)
|
||||||
|
return weights
|
||||||
|
|
||||||
|
|
||||||
def inspect_array(a):
|
def inspect_array(a):
|
||||||
print(a.flags, flush=True)
|
print(a.flags, flush=True)
|
||||||
print(a.dtype, flush=True)
|
print(a.dtype, flush=True)
|
||||||
print(a.sum(), flush=True)
|
print(a.sum(), flush=True)
|
||||||
|
|
||||||
|
|
||||||
def create_network(init=True):
|
|
||||||
return mn.Network((784, 30, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
|
|
||||||
initialize=init)
|
|
||||||
|
|
||||||
|
|
||||||
def combo_net(net, nets, alpha=None):
|
|
||||||
tot = len(nets)
|
|
||||||
if alpha is None:
|
|
||||||
alpha = [1 / tot] * tot
|
|
||||||
for l in net.layers:
|
|
||||||
l.set_weights(np.zeros_like(t) for t in l.trainables())
|
|
||||||
for n, a in zip(nets, alpha):
|
|
||||||
for la, lb in zip(n.layers, net.layers):
|
|
||||||
lb.update(t * a for t in la.trainables())
|
|
||||||
|
|||||||
205
main.c
205
main.c
@@ -9,11 +9,12 @@
|
|||||||
#define TAG_NETWK 2
|
#define TAG_NETWK 2
|
||||||
#define TAG_WEIGH 3
|
#define TAG_WEIGH 3
|
||||||
#define TAG_READY 4
|
#define TAG_READY 4
|
||||||
|
#define TAG_BREAK 5
|
||||||
|
|
||||||
#define COMM 500
|
#define COMM 100
|
||||||
#define ITER 120
|
#define ITER 20
|
||||||
#define BS 50
|
#define BS 50
|
||||||
#define FSPC 0.4
|
#define FSPC 1
|
||||||
|
|
||||||
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
|
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
|
||||||
// I am honestly VERY sorry for this but power corrupts even the best of us
|
// I am honestly VERY sorry for this but power corrupts even the best of us
|
||||||
@@ -126,96 +127,60 @@ int rid(int id, Role what) {
|
|||||||
return id - z;
|
return id - z;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void free_weightlist(WeightList* wl) {
|
||||||
|
for in_range(i, wl->n_weights) {
|
||||||
|
free(wl->weights[i].shape);
|
||||||
|
free(wl->weights[i].W);
|
||||||
|
}
|
||||||
|
free(wl->weights);
|
||||||
|
}
|
||||||
|
|
||||||
void data_reader() {
|
void data_reader() {
|
||||||
// Reads some data and converts it to a float array
|
// Reads some data and converts it to a float array
|
||||||
printf("Start reader\n");
|
INFO_PRINTF("Starting reader %d\n", getpid());
|
||||||
size_t batch_numel = (784 + 10) * BS;
|
|
||||||
float* batch = malloc(batch_numel * sizeof(float));
|
size_t X_numel = 784 * BS;
|
||||||
|
size_t y_numel = 10 * BS;
|
||||||
|
float* X = malloc(X_numel * sizeof(float));
|
||||||
|
float* y = malloc(y_numel * sizeof(float));
|
||||||
int s = 0;
|
int s = 0;
|
||||||
|
|
||||||
while (1) {
|
while (s != -1) {
|
||||||
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
||||||
MPI_STATUS_IGNORE);
|
MPI_STATUS_IGNORE);
|
||||||
mnist_batch(batch, BS, rid(s, SLAVE), number_of_slaves());
|
if (s != -1) {
|
||||||
MPI_Send(batch, batch_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
|
mnist_batch(X, y, BS, rid(s, SLAVE), number_of_slaves());
|
||||||
}
|
MPI_Send(X, X_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
|
||||||
free(batch);
|
MPI_Send(y, y_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
|
||||||
}
|
|
||||||
|
|
||||||
void send_weights(const Network* c_net, int dest, int tag) {
|
|
||||||
// This assumes that the receiving end has a fully initialized network
|
|
||||||
// Of the same arch as `c_net`
|
|
||||||
for in_range(i, c_net->n_layers) {
|
|
||||||
long d0 = c_net->layers[i].shape[0];
|
|
||||||
long d1 = c_net->layers[i].shape[1];
|
|
||||||
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
|
|
||||||
MPI_COMM_WORLD);
|
|
||||||
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
|
|
||||||
MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void recv_weights(const Network* c_net, int src, int tag) {
|
|
||||||
// This assumes that the sender is going to send stuff that is going
|
|
||||||
// To fit exactly into the c_net
|
|
||||||
for in_range(i, c_net->n_layers) {
|
|
||||||
long d0 = c_net->layers[i].shape[0];
|
|
||||||
long d1 = c_net->layers[i].shape[1];
|
|
||||||
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
|
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
|
||||||
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
|
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void send_network(const Network* c_net, int dest, int tag) {
|
|
||||||
// Send a network to the expecting destination
|
|
||||||
// It's best to receive with `recv_network`
|
|
||||||
size_t n_layers = c_net->n_layers;
|
|
||||||
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
|
|
||||||
for in_range(i, c_net->n_layers) {
|
|
||||||
long d0 = c_net->layers[i].shape[0];
|
|
||||||
long d1 = c_net->layers[i].shape[1];
|
|
||||||
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
|
|
||||||
MPI_COMM_WORLD);
|
|
||||||
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
|
|
||||||
MPI_COMM_WORLD);
|
|
||||||
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
|
|
||||||
MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void recv_network(Network* c_net, int src, int tag) {
|
|
||||||
// c_net HAS TO BE a fresh empty Network struct
|
|
||||||
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
|
|
||||||
MPI_STATUS_IGNORE);
|
|
||||||
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
|
|
||||||
for in_range(i, c_net->n_layers) {
|
|
||||||
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
|
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
|
||||||
long d0 = c_net->layers[i].shape[0];
|
|
||||||
long d1 = c_net->layers[i].shape[1];
|
|
||||||
c_net->layers[i].ownmem = 1;
|
|
||||||
c_net->layers[i].W = malloc(sizeof(float) * d0 * d1);
|
|
||||||
c_net->layers[i].b = malloc(sizeof(float) * d1);
|
|
||||||
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
|
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
|
||||||
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
|
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void free_network_contents(Network* c_net) {
|
|
||||||
// Cleans up the net
|
|
||||||
for in_range(i, c_net->n_layers) {
|
|
||||||
if (c_net->layers[i].ownmem) {
|
|
||||||
free(c_net->layers[i].b);
|
|
||||||
free(c_net->layers[i].W);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (c_net->layers != NULL) {
|
free(X);
|
||||||
free(c_net->layers);
|
free(y);
|
||||||
c_net->layers = NULL; // So that you don't get any ideas
|
}
|
||||||
|
|
||||||
|
void send_weights(const WeightList* wl, int dest, int tag) {
|
||||||
|
// This assumes that the receiving end knows exactly
|
||||||
|
// the number of elements being sent and has memory ready
|
||||||
|
// for it.
|
||||||
|
for in_range(i, wl->n_weights) {
|
||||||
|
long n_el = 1;
|
||||||
|
for in_range(k, wl->weights[i].dims) {
|
||||||
|
n_el *= wl->weights[i].shape[k];
|
||||||
|
}
|
||||||
|
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void recv_weights(WeightList* wl, int src, int tag) {
|
||||||
|
// This assumes that the sender sends stuff that is going
|
||||||
|
// to fit into memory in correct order too.
|
||||||
|
for in_range(i, wl->n_weights) {
|
||||||
|
long n_el = 1;
|
||||||
|
for in_range(d, wl->weights[i].dims) {
|
||||||
|
n_el *= wl->weights[i].shape[d];
|
||||||
|
}
|
||||||
|
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src, tag, MPI_COMM_WORLD,
|
||||||
|
MPI_STATUS_IGNORE);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -225,33 +190,38 @@ void slave_node() {
|
|||||||
// 2. Request batch from reader ([ ] has to choose a reader)
|
// 2. Request batch from reader ([ ] has to choose a reader)
|
||||||
// 3. Do computations
|
// 3. Do computations
|
||||||
// 4. Send weights back to master
|
// 4. Send weights back to master
|
||||||
printf("Start slave\n");
|
INFO_PRINTF("Starting slave %d\n", getpid());
|
||||||
|
|
||||||
int me;
|
int me;
|
||||||
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
||||||
|
|
||||||
size_t batch_numel = (784 + 10) * BS;
|
size_t X_numel = 784 * BS;
|
||||||
float* batch = malloc(batch_numel * sizeof(float));
|
size_t y_numel = 10 * BS;
|
||||||
Network net;
|
float* X = malloc(X_numel * sizeof(float));
|
||||||
create_c_network(&net);
|
float* y = malloc(y_numel * sizeof(float));
|
||||||
|
|
||||||
|
PyObject* net = create_network();
|
||||||
|
WeightList wl;
|
||||||
|
init_weightlist_like(&wl, net);
|
||||||
|
|
||||||
for in_range(i, COMM) {
|
for in_range(i, COMM) {
|
||||||
// INFO_PRINTF("%d announcing itself\n", my_id());
|
|
||||||
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
|
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
|
||||||
// INFO_PRINTF("%d waitng for weights from %d\n", my_id(), master_id(0));
|
recv_weights(&wl, master_id(0), TAG_WEIGH);
|
||||||
recv_weights(&net, master_id(0), TAG_WEIGH);
|
set_net_weights(net, &wl);
|
||||||
// INFO_PRINTF("%d an answer!\n", my_id());
|
|
||||||
for in_range(k, ITER) {
|
for in_range(k, ITER) {
|
||||||
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
|
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
|
||||||
MPI_Recv(batch, batch_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
|
MPI_Recv(X, X_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
|
||||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||||
step_net(&net, batch, BS);
|
MPI_Recv(y, y_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
|
||||||
|
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||||
|
step_net(net, X, y, BS);
|
||||||
}
|
}
|
||||||
printf("%d net: %f\n", my_id(), eval_net(&net));
|
printf("%d net: %f\n", my_id(), eval_net(net));
|
||||||
send_weights(&net, master_id(0), TAG_WEIGH);
|
update_weightlist(&wl, net);
|
||||||
|
send_weights(&wl, master_id(0), TAG_WEIGH);
|
||||||
}
|
}
|
||||||
free_network_contents(&net);
|
Py_DECREF(net);
|
||||||
free(batch);
|
free_weightlist(&wl);
|
||||||
}
|
}
|
||||||
|
|
||||||
void master_node() {
|
void master_node() {
|
||||||
@@ -261,34 +231,47 @@ void master_node() {
|
|||||||
// 2. Receive weights back (synchronous)
|
// 2. Receive weights back (synchronous)
|
||||||
// 3. Average the weights
|
// 3. Average the weights
|
||||||
|
|
||||||
printf("Start master\n");
|
|
||||||
|
|
||||||
Network frank;
|
PyObject* frank = create_network();
|
||||||
create_c_network(&frank);
|
WeightList wl;
|
||||||
|
init_weightlist_like(&wl, frank);
|
||||||
|
update_weightlist(&wl, frank);
|
||||||
|
|
||||||
int spr = number_of_slaves() * FSPC; // Slaves per round
|
int spr = number_of_slaves() * FSPC; // Slaves per round
|
||||||
int s;
|
int s;
|
||||||
|
|
||||||
Network *nets = malloc(sizeof(Network) * spr);
|
WeightList *wls = malloc(sizeof(WeightList) * spr);
|
||||||
int *handles = malloc(sizeof(int) * spr);
|
int *handles = malloc(sizeof(int) * spr);
|
||||||
|
|
||||||
for in_range(i, spr) create_c_network(nets + i);
|
for in_range(i, spr) {
|
||||||
|
init_weightlist_like(wls + i, frank);
|
||||||
|
}
|
||||||
for in_range(i, COMM) {
|
for in_range(i, COMM) {
|
||||||
|
|
||||||
for in_range(k, spr) {
|
for in_range(k, spr) {
|
||||||
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
||||||
MPI_STATUS_IGNORE);
|
MPI_STATUS_IGNORE);
|
||||||
send_weights(&frank, s, TAG_WEIGH);
|
send_weights(&wl, s, TAG_WEIGH);
|
||||||
handles[k] = s;
|
handles[k] = s;
|
||||||
}
|
}
|
||||||
for in_range(k, spr) {
|
for in_range(k, spr) {
|
||||||
recv_weights(nets + k, handles[k], TAG_WEIGH);
|
recv_weights(wls + k, handles[k], TAG_WEIGH);
|
||||||
|
}
|
||||||
|
combo_weights(&wl, wls, spr);
|
||||||
|
set_net_weights(frank, &wl);
|
||||||
|
printf("Frank: %f\n", eval_net(frank));
|
||||||
|
}
|
||||||
|
Py_DECREF(frank);
|
||||||
|
free_weightlist(&wl);
|
||||||
|
for in_range(i, spr) free_weightlist(wls + i);
|
||||||
|
free(wls);
|
||||||
|
if (rid(my_id(), MASTER) == 0) {
|
||||||
|
for in_range(r, number_of_readers()) {
|
||||||
|
int stop = -1;
|
||||||
|
MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
|
||||||
|
MPI_COMM_WORLD);
|
||||||
}
|
}
|
||||||
combo_c_net(&frank, nets, spr);
|
|
||||||
printf("Frank: %f\n", eval_net(&frank));
|
|
||||||
}
|
}
|
||||||
free_network_contents(&frank);
|
|
||||||
free(nets);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main (int argc, const char **argv) {
|
int main (int argc, const char **argv) {
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
project('fedavg_mpi', 'c')
|
project('fedavg_mpi', 'c')
|
||||||
|
add_global_arguments('-Wno-unused-command-line-argument', language: 'c')
|
||||||
add_project_arguments(
|
add_project_arguments(
|
||||||
'-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION',
|
'-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION',
|
||||||
language: 'c'
|
language: 'c'
|
||||||
@@ -13,5 +14,6 @@ numpy_header = include_directories(run_command(
|
|||||||
executable(
|
executable(
|
||||||
'fedavg_mpi', 'main.c', 'cythoned/library.c',
|
'fedavg_mpi', 'main.c', 'cythoned/library.c',
|
||||||
dependencies: [mpi, python],
|
dependencies: [mpi, python],
|
||||||
include_directories: numpy_header
|
include_directories: numpy_header,
|
||||||
|
link_args: '-Wl,-w'
|
||||||
)
|
)
|
||||||
|
|||||||
16
nn.py
Normal file
16
nn.py
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
import os
|
||||||
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
|
||||||
|
from mynet import load_mnist
|
||||||
|
|
||||||
|
|
||||||
|
def create_mnist_network():
|
||||||
|
model = tf.keras.models.Sequential([
|
||||||
|
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
|
||||||
|
tf.keras.layers.Dense(10, activation='softmax')
|
||||||
|
])
|
||||||
|
model.compile(loss='categorical_crossentropy', optimizer='sgd',
|
||||||
|
metrics=['accuracy'])
|
||||||
|
return model
|
||||||
Reference in New Issue
Block a user