after literally hours of pain, keras learns mnist

This commit is contained in:
2019-11-29 22:10:25 -08:00
parent 87208d599d
commit 04c35ed9b6
5 changed files with 191 additions and 196 deletions

1
.gitignore vendored
View File

@@ -5,3 +5,4 @@ library.h
run
compile_commands.json
build/
__pycache__/

View File

@@ -1,30 +1,30 @@
cimport numpy as np
import numpy as np
import mynet as mn
from sys import stderr
from libc.stdlib cimport malloc
from libc.string cimport memcpy
import nn
ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist()
opt = mn.SGDOptimizer(lr=0.1)
X_train, y_train, X_test, y_test = nn.load_mnist()
cdef extern from "numpy/arrayobject.h":
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Dense:
long[2] shape
int ownmem
ctypedef public struct Weight:
size_t dims
long* shape
float* W
float* b
ctypedef public struct Network:
size_t n_layers;
Dense* layers;
ctypedef public struct WeightList:
size_t n_weights;
Weight* weights;
cdef public char *greeting():
@@ -35,33 +35,31 @@ cdef public void debug_print(object o):
print(o)
cdef public void predict(
Network* net,
float* X,
size_t batch_size
):
pass
cdef public object create_network():
return nn.create_mnist_network()
cdef public void set_net_weights(object net, WeightList* wl):
net.set_weights(wrap_weight_list(wl))
cdef public void step_net(
Network* c_net,
float* batch_data,
size_t batch_size
object net, float* X, float* y, size_t batch_size
):
net = wrap_c_network(c_net)
cdef size_t in_dim = net.geometry[0]
cdef size_t out_dim = net.geometry[-1]
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
# print(np.argmax(batch[:, in_dim:], axis=1), flush=True)
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
in_shape = (batch_size,) + net.layers[0].input_shape[1:]
out_shape = (batch_size,) + net.layers[-1].output_shape[1:]
X_train = np.asarray(<float[:np.prod(in_shape)]>X).reshape(in_shape)
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape)
net.train_on_batch(X_train, y_train)
cdef public float eval_net(Network* c_net):
net = wrap_c_network(c_net)
return net.evaluate(X_test, y_test, 'cls')
cdef public float eval_net(object net):
return net.evaluate(X_test, y_test, verbose=False)[1]
cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
cdef public void mnist_batch(float* X, float* y, size_t bs,
int part, int total):
if total == 0:
X_pool, y_pool = X_train, y_train
else:
@@ -70,71 +68,66 @@ cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
y_pool = y_train[part*partsize:(part+1)*partsize]
idx = np.random.choice(len(X_pool), bs, replace=True)
arr = np.concatenate([X_pool[idx], y_pool[idx]], axis=1)
assert arr.flags['C_CONTIGUOUS']
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
X_r = X_pool[idx]
y_r = y_pool[idx]
assert X_r.flags['C_CONTIGUOUS']
assert y_r.flags['C_CONTIGUOUS']
memcpy(X, <float*>PyArray_DATA(X_r), X_r.size * sizeof(float))
memcpy(y, <float*>PyArray_DATA(y_r), y_r.size * sizeof(float))
cdef public void create_c_network(Network* c_net):
net = create_network()
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
c_net.layers[i].shape[0] = d0
c_net.layers[i].shape[1] = d1
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
assert l.W.flags['C_CONTIGUOUS']
assert l.b.flags['C_CONTIGUOUS']
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
c_net.layers[i].ownmem = 1
cdef public void init_weightlist_like(WeightList* wl, object net):
weights = net.get_weights()
wl.n_weights = len(weights)
wl.weights = <Weight*>malloc(sizeof(Weight) * wl.n_weights)
for i, w in enumerate(weights):
sh = np.asarray(w.shape, dtype=long)
wl.weights[i].dims = sh.size
wl.weights[i].shape = <long*>malloc(sizeof(long) * sh.size)
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
assert sh.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].shape, <long*>PyArray_DATA(sh),
sh.size * sizeof(long))
cdef public void combo_c_net(Network* c_frank, Network* c_nets,
size_t num_nets):
"""ONE-LINER HOW BOUT THAT HUH."""
combo_net(
wrap_c_network(c_frank),
[wrap_c_network(&c_nets[i]) for i in range(num_nets)]
cdef public void update_weightlist(WeightList* wl, object net):
weights = net.get_weights()
for i, w in enumerate(weights):
w = w.astype(np.float32)
assert w.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].W, <float*>PyArray_DATA(w),
w.size * sizeof(float))
cdef public void combo_weights(
WeightList* wl_frank, WeightList* wls, size_t num_weights
):
"""Not a one-liner anymore :/"""
alpha = 1. / num_weights
frank = wrap_weight_list(wl_frank)
for w in frank:
w[:] = 0
for i in range(num_weights):
for wf, ww in zip(frank, wrap_weight_list(&wls[i])):
wf += alpha * ww
cdef list wrap_weight_list(WeightList* wl):
weights = []
for i in range(wl.n_weights):
w_shape = <long[:wl.weights[i].dims]>wl.weights[i].shape
w_numel = np.prod(w_shape)
weights.append(
np.asarray(<float[:w_numel]>wl.weights[i].W).reshape(w_shape)
)
cdef public void be_like(Network* c_dst, Network* c_src):
"""Conveniently transform one C network into another."""
dst = wrap_c_network(c_dst)
src = wrap_c_network(c_src)
dst.be_like(src)
cdef object wrap_c_network(Network* c_net):
"""Create a thin wrapper not owning the memory."""
net = create_network(init=False)
for i, l in enumerate(net.layers):
d0, d1 = c_net.layers[i].shape[0], c_net.layers[i].shape[1]
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
return net
return weights
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def create_network(init=True):
return mn.Network((784, 30, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
initialize=init)
def combo_net(net, nets, alpha=None):
tot = len(nets)
if alpha is None:
alpha = [1 / tot] * tot
for l in net.layers:
l.set_weights(np.zeros_like(t) for t in l.trainables())
for n, a in zip(nets, alpha):
for la, lb in zip(n.layers, net.layers):
lb.update(t * a for t in la.trainables())

193
main.c
View File

@@ -9,11 +9,12 @@
#define TAG_NETWK 2
#define TAG_WEIGH 3
#define TAG_READY 4
#define TAG_BREAK 5
#define COMM 500
#define ITER 120
#define COMM 100
#define ITER 20
#define BS 50
#define FSPC 0.4
#define FSPC 1
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
// I am honestly VERY sorry for this but power corrupts even the best of us
@@ -126,96 +127,60 @@ int rid(int id, Role what) {
return id - z;
}
void free_weightlist(WeightList* wl) {
for in_range(i, wl->n_weights) {
free(wl->weights[i].shape);
free(wl->weights[i].W);
}
free(wl->weights);
}
void data_reader() {
// Reads some data and converts it to a float array
printf("Start reader\n");
size_t batch_numel = (784 + 10) * BS;
float* batch = malloc(batch_numel * sizeof(float));
INFO_PRINTF("Starting reader %d\n", getpid());
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
int s = 0;
while (1) {
while (s != -1) {
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
mnist_batch(batch, BS, rid(s, SLAVE), number_of_slaves());
MPI_Send(batch, batch_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
if (s != -1) {
mnist_batch(X, y, BS, rid(s, SLAVE), number_of_slaves());
MPI_Send(X, X_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
MPI_Send(y, y_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
}
free(batch);
}
free(X);
free(y);
}
void send_weights(const Network* c_net, int dest, int tag) {
// This assumes that the receiving end has a fully initialized network
// Of the same arch as `c_net`
for in_range(i, c_net->n_layers) {
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
void send_weights(const WeightList* wl, int dest, int tag) {
// This assumes that the receiving end knows exactly
// the number of elements being sent and has memory ready
// for it.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(k, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[k];
}
MPI_Send(wl->weights[i].W, n_el, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);
}
}
void recv_weights(const Network* c_net, int src, int tag) {
// This assumes that the sender is going to send stuff that is going
// To fit exactly into the c_net
for in_range(i, c_net->n_layers) {
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
void recv_weights(WeightList* wl, int src, int tag) {
// This assumes that the sender sends stuff that is going
// to fit into memory in correct order too.
for in_range(i, wl->n_weights) {
long n_el = 1;
for in_range(d, wl->weights[i].dims) {
n_el *= wl->weights[i].shape[d];
}
}
void send_network(const Network* c_net, int dest, int tag) {
// Send a network to the expecting destination
// It's best to receive with `recv_network`
size_t n_layers = c_net->n_layers;
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
for in_range(i, c_net->n_layers) {
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
MPI_Send(c_net->layers[i].b, d1, MPI_FLOAT, dest, tag,
MPI_COMM_WORLD);
}
}
void recv_network(Network* c_net, int src, int tag) {
// c_net HAS TO BE a fresh empty Network struct
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
MPI_Recv(wl->weights[i].W, n_el, MPI_FLOAT, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
for in_range(i, c_net->n_layers) {
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
long d0 = c_net->layers[i].shape[0];
long d1 = c_net->layers[i].shape[1];
c_net->layers[i].ownmem = 1;
c_net->layers[i].W = malloc(sizeof(float) * d0 * d1);
c_net->layers[i].b = malloc(sizeof(float) * d1);
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(c_net->layers[i].b, d1, MPI_FLOAT, src, tag,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
void free_network_contents(Network* c_net) {
// Cleans up the net
for in_range(i, c_net->n_layers) {
if (c_net->layers[i].ownmem) {
free(c_net->layers[i].b);
free(c_net->layers[i].W);
}
}
if (c_net->layers != NULL) {
free(c_net->layers);
c_net->layers = NULL; // So that you don't get any ideas
}
}
@@ -225,33 +190,38 @@ void slave_node() {
// 2. Request batch from reader ([ ] has to choose a reader)
// 3. Do computations
// 4. Send weights back to master
printf("Start slave\n");
INFO_PRINTF("Starting slave %d\n", getpid());
int me;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
size_t batch_numel = (784 + 10) * BS;
float* batch = malloc(batch_numel * sizeof(float));
Network net;
create_c_network(&net);
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
PyObject* net = create_network();
WeightList wl;
init_weightlist_like(&wl, net);
for in_range(i, COMM) {
// INFO_PRINTF("%d announcing itself\n", my_id());
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
// INFO_PRINTF("%d waitng for weights from %d\n", my_id(), master_id(0));
recv_weights(&net, master_id(0), TAG_WEIGH);
// INFO_PRINTF("%d an answer!\n", my_id());
recv_weights(&wl, master_id(0), TAG_WEIGH);
set_net_weights(net, &wl);
for in_range(k, ITER) {
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
MPI_Recv(batch, batch_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_Recv(X, X_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
step_net(&net, batch, BS);
MPI_Recv(y, y_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
step_net(net, X, y, BS);
}
printf("%d net: %f\n", my_id(), eval_net(&net));
send_weights(&net, master_id(0), TAG_WEIGH);
printf("%d net: %f\n", my_id(), eval_net(net));
update_weightlist(&wl, net);
send_weights(&wl, master_id(0), TAG_WEIGH);
}
free_network_contents(&net);
free(batch);
Py_DECREF(net);
free_weightlist(&wl);
}
void master_node() {
@@ -261,34 +231,47 @@ void master_node() {
// 2. Receive weights back (synchronous)
// 3. Average the weights
printf("Start master\n");
Network frank;
create_c_network(&frank);
PyObject* frank = create_network();
WeightList wl;
init_weightlist_like(&wl, frank);
update_weightlist(&wl, frank);
int spr = number_of_slaves() * FSPC; // Slaves per round
int s;
Network *nets = malloc(sizeof(Network) * spr);
WeightList *wls = malloc(sizeof(WeightList) * spr);
int *handles = malloc(sizeof(int) * spr);
for in_range(i, spr) create_c_network(nets + i);
for in_range(i, spr) {
init_weightlist_like(wls + i, frank);
}
for in_range(i, COMM) {
for in_range(k, spr) {
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
send_weights(&frank, s, TAG_WEIGH);
send_weights(&wl, s, TAG_WEIGH);
handles[k] = s;
}
for in_range(k, spr) {
recv_weights(nets + k, handles[k], TAG_WEIGH);
recv_weights(wls + k, handles[k], TAG_WEIGH);
}
combo_weights(&wl, wls, spr);
set_net_weights(frank, &wl);
printf("Frank: %f\n", eval_net(frank));
}
Py_DECREF(frank);
free_weightlist(&wl);
for in_range(i, spr) free_weightlist(wls + i);
free(wls);
if (rid(my_id(), MASTER) == 0) {
for in_range(r, number_of_readers()) {
int stop = -1;
MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
MPI_COMM_WORLD);
}
combo_c_net(&frank, nets, spr);
printf("Frank: %f\n", eval_net(&frank));
}
free_network_contents(&frank);
free(nets);
}
int main (int argc, const char **argv) {

View File

@@ -1,4 +1,5 @@
project('fedavg_mpi', 'c')
add_global_arguments('-Wno-unused-command-line-argument', language: 'c')
add_project_arguments(
'-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION',
language: 'c'
@@ -13,5 +14,6 @@ numpy_header = include_directories(run_command(
executable(
'fedavg_mpi', 'main.c', 'cythoned/library.c',
dependencies: [mpi, python],
include_directories: numpy_header
include_directories: numpy_header,
link_args: '-Wl,-w'
)

16
nn.py Normal file
View File

@@ -0,0 +1,16 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
from mynet import load_mnist
def create_mnist_network():
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
return model