small refactoring and kicked the visualizer again
This commit is contained in:
25
bridge.pyx
25
bridge.pyx
@@ -47,6 +47,12 @@ cdef public void serve():
|
||||
srv.serve()
|
||||
|
||||
|
||||
cdef public void server_update(float *emb):
|
||||
embeddings = np.asarray(<float[:getvocsize(),:getemb()]>emb)
|
||||
low_dim = nn.calc_TSNE(embeddings)
|
||||
srv.emb_map = dict(zip(nn.inv_vocab, low_dim))
|
||||
|
||||
|
||||
cdef public size_t getwin():
|
||||
return nn.WIN
|
||||
|
||||
@@ -67,6 +73,10 @@ cdef public float gettarget():
|
||||
return nn.CFG['target']
|
||||
|
||||
|
||||
cdef public size_t getvocsize():
|
||||
return len(nn.vocab)
|
||||
|
||||
|
||||
cdef public int get_tokens(WordList* wl, const char *filename):
|
||||
fnu = filename.decode('utf-8')
|
||||
if fnu not in tokenizers:
|
||||
@@ -101,8 +111,8 @@ cdef public void _dbg_print(object o):
|
||||
eprint(o)
|
||||
|
||||
|
||||
cdef public void _dbg_print_cbow_batch(float* batch, size_t bs):
|
||||
X_np, y_np = cbow_batch(batch, bs)
|
||||
cdef public void _dbg_print_cbow_batch(float* batch):
|
||||
X_np, y_np = cbow_batch(batch)
|
||||
eprint(X_np)
|
||||
eprint(y_np)
|
||||
|
||||
@@ -124,10 +134,8 @@ cdef public void set_net_weights(object net, WeightList* wl):
|
||||
net.set_weights(wrap_weight_list(wl))
|
||||
|
||||
|
||||
cdef public void step_net(
|
||||
object net, float* batch, size_t bs
|
||||
):
|
||||
X_train, y_train = cbow_batch(batch, bs)
|
||||
cdef public void step_net(object net, float* batch):
|
||||
X_train, y_train = cbow_batch(batch)
|
||||
net.train_on_batch(X_train, y_train)
|
||||
|
||||
|
||||
@@ -183,8 +191,9 @@ cdef public void combo_weights(
|
||||
wf += alpha * ww
|
||||
|
||||
|
||||
cdef tuple cbow_batch(float* batch, size_t bs):
|
||||
win = nn.WIN
|
||||
cdef tuple cbow_batch(float* batch):
|
||||
win = getwin()
|
||||
bs = getbs()
|
||||
batch_np = np.asarray(<float[:bs,:2*win+1]>batch)
|
||||
X_np = batch_np[:, [*range(win), *range(win+1, win+win+1)]]
|
||||
y_np = nn.onehot(batch_np[:, win], nc=len(nn.vocab))
|
||||
|
||||
@@ -113,6 +113,13 @@ def get_embeddings(net):
|
||||
return net.get_weights()[0]
|
||||
|
||||
|
||||
def calc_TSNE(emb):
|
||||
# import umap
|
||||
# return umap.UMAP().fit_transform(emb)
|
||||
return emb
|
||||
|
||||
|
||||
|
||||
def save_embeddings(emb):
|
||||
import numpy as np
|
||||
np.savetxt(os.path.join(RESULTS, f'embeddings_{CFG["data_name"]}.csv'),
|
||||
|
||||
64
main.c
64
main.c
@@ -17,6 +17,7 @@
|
||||
#define TAG_IWIND 8
|
||||
#define TAG_INSTR 9
|
||||
#define TAG_TERMT 10
|
||||
#define TAG_EMBED 11
|
||||
|
||||
#define in_range(i, x) (size_t i = 0; i < (x); i++)
|
||||
// I am honestly VERY sorry for this
|
||||
@@ -33,7 +34,7 @@ int g_argc; // sorry!
|
||||
|
||||
typedef enum {
|
||||
TOKENIZER,
|
||||
FILTERER,
|
||||
FILTER,
|
||||
BATCHER,
|
||||
LEARNER,
|
||||
VISUALIZER,
|
||||
@@ -56,19 +57,19 @@ size_t number_of(Role what) {
|
||||
switch (what) {
|
||||
case TOKENIZER:
|
||||
return g_argc - 1;
|
||||
case FILTERER:
|
||||
case FILTER:
|
||||
return number_of(TOKENIZER);
|
||||
case BATCHER:
|
||||
return number_of(TOKENIZER);
|
||||
case LEARNER:
|
||||
return world_size()
|
||||
- number_of(TOKENIZER)
|
||||
- number_of(FILTERER)
|
||||
- number_of(FILTER)
|
||||
- number_of(BATCHER)
|
||||
- number_of(DISPATCHER)
|
||||
- number_of(VISUALIZER);
|
||||
case VISUALIZER:
|
||||
return 1;
|
||||
return 0;
|
||||
case DISPATCHER:
|
||||
return 1;
|
||||
}
|
||||
@@ -77,7 +78,7 @@ size_t number_of(Role what) {
|
||||
int mpi_id_from_role_id(Role role, int rid) {
|
||||
if (rid >= number_of(role) || rid < 0) {
|
||||
INFO_PRINTF("There aren't %d of %d (but %lu)\n",
|
||||
rid, role, number_of(role));
|
||||
rid+1, role, number_of(role));
|
||||
MPI_Abort(MPI_COMM_WORLD, 1);
|
||||
}
|
||||
int base = 0;
|
||||
@@ -176,7 +177,7 @@ void recv_window(long* window, size_t winsize, int src) {
|
||||
void tokenizer(const char* source) {
|
||||
INFO_PRINTF("Starting tokenizer %d\n", getpid());
|
||||
int rid = my_role_id(TOKENIZER);
|
||||
int next = mpi_id_from_role_id(FILTERER, rid);
|
||||
int next = mpi_id_from_role_id(FILTER, rid);
|
||||
|
||||
WordList wl = {0, 0, NULL};
|
||||
size_t sync_ctr = 0;
|
||||
@@ -209,9 +210,9 @@ void tokenizer(const char* source) {
|
||||
INFO_PRINTF("Finishing tokenizer %d\n", getpid());
|
||||
}
|
||||
|
||||
void filterer() {
|
||||
INFO_PRINTF("Starting filterer %d\n", getpid());
|
||||
int rid = my_role_id(FILTERER);
|
||||
void filter() {
|
||||
INFO_PRINTF("Starting filter %d\n", getpid());
|
||||
int rid = my_role_id(FILTER);
|
||||
int tokenizer = mpi_id_from_role_id(TOKENIZER, rid);
|
||||
int batcher = mpi_id_from_role_id(BATCHER, rid);
|
||||
|
||||
@@ -239,13 +240,13 @@ void filterer() {
|
||||
send_window(window, window_size, batcher);
|
||||
free_word(&w);
|
||||
free(window);
|
||||
INFO_PRINTF("Finishing filterer %d\n", getpid());
|
||||
INFO_PRINTF("Finishing filter %d\n", getpid());
|
||||
}
|
||||
|
||||
void batcher() {
|
||||
INFO_PRINTF("Starting batcher %d\n", getpid());
|
||||
int rid = my_role_id(BATCHER);
|
||||
int tokenizer = mpi_id_from_role_id(FILTERER, rid);
|
||||
int tokenizer = mpi_id_from_role_id(FILTER, rid);
|
||||
int bs = getbs();
|
||||
|
||||
int learner_mpi_id = 0;
|
||||
@@ -326,15 +327,13 @@ void learner() {
|
||||
int dispatcher = mpi_id_from_role_id(DISPATCHER, 0);
|
||||
INFO_PRINTF("Learner %d (pid %d) is assigned to pipeline %d\n", rid,
|
||||
getpid(), my_batcher_rid);
|
||||
size_t bs = getbs();
|
||||
size_t bpe = getbpe();
|
||||
|
||||
PyObject* net = create_network();
|
||||
WeightList wl;
|
||||
init_weightlist_like(&wl, net);
|
||||
|
||||
size_t window_size = 2 * getwin() + 1;
|
||||
size_t bufsize = bs * window_size;
|
||||
size_t bufsize = getbs() * window_size;
|
||||
float* batch = malloc(bufsize * sizeof(float));
|
||||
|
||||
int go;
|
||||
@@ -344,11 +343,11 @@ void learner() {
|
||||
while (go != -1) {
|
||||
recv_weights(&wl, dispatcher);
|
||||
set_net_weights(net, &wl);
|
||||
for in_range(k, bpe) {
|
||||
for in_range(k, getbpe()) {
|
||||
MPI_Send(&me, 1, MPI_INT, batcher, TAG_READY, MPI_COMM_WORLD);
|
||||
MPI_Recv(batch, bufsize, MPI_FLOAT, batcher, TAG_BATCH,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
step_net(net, batch, bs);
|
||||
step_net(net, batch);
|
||||
}
|
||||
update_weightlist(&wl, net);
|
||||
send_weights(&wl, dispatcher);
|
||||
@@ -365,9 +364,11 @@ void learner() {
|
||||
void dispatcher() {
|
||||
INFO_PRINTF("Starting dispatcher %d\n", getpid());
|
||||
int go = 1;
|
||||
// int visualizer = mpi_id_from_role_id(VISUALIZER, 0);
|
||||
size_t bs = getbs();
|
||||
size_t bpe = getbpe();
|
||||
float target = gettarget();
|
||||
// size_t emb_mat_size = getemb() * getvocsize();
|
||||
|
||||
PyObject* frank = create_network();
|
||||
WeightList wl;
|
||||
@@ -403,6 +404,9 @@ void dispatcher() {
|
||||
crt_loss = eval_net(frank);
|
||||
min_loss = crt_loss < min_loss ? crt_loss : min_loss;
|
||||
INFO_PRINTF("Round %ld, validation loss %f\n", rounds, crt_loss);
|
||||
// MPI_Send(&go, 1, MPI_INT, visualizer, TAG_INSTR, MPI_COMM_WORLD);
|
||||
// MPI_Send(wl.weights[0].W, emb_mat_size, MPI_FLOAT,
|
||||
// visualizer, TAG_EMBED, MPI_COMM_WORLD);
|
||||
|
||||
ckpt_net(frank);
|
||||
|
||||
@@ -419,6 +423,8 @@ void dispatcher() {
|
||||
MPI_Send(&go, 1, MPI_INT, mpi_id_from_role_id(LEARNER, l),
|
||||
TAG_INSTR, MPI_COMM_WORLD);
|
||||
}
|
||||
// MPI_Send(&go, 1, MPI_INT, mpi_id_from_role_id(VISUALIZER, 0),
|
||||
// TAG_INSTR, MPI_COMM_WORLD);
|
||||
|
||||
save_emb(frank);
|
||||
|
||||
@@ -439,16 +445,38 @@ void dispatcher() {
|
||||
free(wls);
|
||||
free(round);
|
||||
INFO_PRINTF("Finishing dispatcher %d\n", getpid());
|
||||
// sleep(4);
|
||||
// INFO_PRINTLN("Visualization server is still running on port 8448\n"
|
||||
// "To terminate, press Ctrl-C");
|
||||
}
|
||||
|
||||
void visualizer() {
|
||||
INFO_PRINTF("Starting visualizer %d\n", getpid());
|
||||
serve();
|
||||
|
||||
int dispatcher = mpi_id_from_role_id(DISPATCHER, 0);
|
||||
int go_on = 1;
|
||||
|
||||
size_t emb_mat_size = getvocsize() * getemb();
|
||||
float* embeddings = malloc(emb_mat_size * sizeof(float));
|
||||
|
||||
MPI_Recv(&go_on, 1, MPI_INT, dispatcher, TAG_INSTR, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
|
||||
while(go_on != -1) {
|
||||
MPI_Recv(embeddings, emb_mat_size, MPI_FLOAT, dispatcher, TAG_EMBED,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
server_update(embeddings);
|
||||
MPI_Recv(&go_on, 1, MPI_INT, dispatcher, TAG_INSTR, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
}
|
||||
INFO_PRINTF("Exiting visualizer node %d\n", getpid());
|
||||
}
|
||||
|
||||
int main (int argc, const char **argv) {
|
||||
MPI_Init(NULL, NULL);
|
||||
|
||||
// Some sanity checks on the input
|
||||
if (my_mpi_id() == 0) {
|
||||
if (argc < 2) {
|
||||
INFO_PRINTLN("NOT ENOUGH INPUTS!");
|
||||
@@ -479,8 +507,8 @@ int main (int argc, const char **argv) {
|
||||
role_id = role_id_from_mpi_id(TOKENIZER, my_mpi_id());
|
||||
tokenizer(argv[role_id + 1]);
|
||||
break;
|
||||
case FILTERER:
|
||||
filterer();
|
||||
case FILTER:
|
||||
filter();
|
||||
break;
|
||||
case BATCHER:
|
||||
batcher();
|
||||
|
||||
16
server.py
16
server.py
@@ -1,17 +1,26 @@
|
||||
from threading import Thread
|
||||
from sys import stderr
|
||||
|
||||
import flask
|
||||
|
||||
|
||||
t = None
|
||||
app = flask.Flask(__name__)
|
||||
counter = 0
|
||||
emb_map = None
|
||||
|
||||
|
||||
|
||||
import logging
|
||||
log = logging.getLogger('werkzeug')
|
||||
log.setLevel(logging.ERROR)
|
||||
app.logger.setLevel(logging.ERROR)
|
||||
|
||||
|
||||
@app.route('/')
|
||||
def main():
|
||||
return f'Hello {counter}'
|
||||
if emb_map is None:
|
||||
return 'Hello World!'
|
||||
else:
|
||||
return '\n'.join(f'{w}: {vec}' for w, vec in emb_map.items())
|
||||
|
||||
|
||||
def serve():
|
||||
@@ -19,7 +28,6 @@ def serve():
|
||||
if t is None:
|
||||
t = Thread(target=app.run, kwargs={'port': 8448})
|
||||
t.start()
|
||||
print('So I kinda started', flush=True, file=stderr)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Reference in New Issue
Block a user