tokenizer and batcher are sane and work

i wonder how much pain it's gonna cause me to change
something in the code
This commit is contained in:
2019-11-30 22:16:42 -08:00
parent 04c35ed9b6
commit 101248965c
6 changed files with 321 additions and 156 deletions

4
.gitignore vendored
View File

@@ -1,8 +1,8 @@
.*.sw?
DS_Store
library.c
library.h
run
compile_commands.json
*.txt
build/
cythoned/
__pycache__/

View File

@@ -3,13 +3,14 @@ import numpy as np
from sys import stderr
from libc.stdlib cimport malloc
from libc.stdlib cimport malloc, realloc
from libc.string cimport memcpy
import nn
import library as nn
X_train, y_train, X_test, y_test = nn.load_mnist()
tokenizers = {}
cdef extern from "numpy/arrayobject.h":
@@ -27,16 +28,62 @@ ctypedef public struct WeightList:
Weight* weights;
ctypedef public struct Word:
size_t mem
char* data
ctypedef public struct WordList:
size_t mem
size_t n_words
Word* words
cdef public char *greeting():
return f'The value is {3**3**3}'.encode('utf-8')
cdef public int get_tokens(WordList* wl, const char *filename):
fnu = filename.decode('utf-8')
if fnu not in tokenizers:
tokenizers[fnu] = nn.token_generator(fnu)
g = tokenizers[fnu]
try:
words = next(g)
except StopIteration:
return 0
words_into_wordlist(wl, words)
return 1
cdef public long vocab_idx_of(Word* w):
word = w.data.decode('utf-8')
if word.lower() in nn.vocab:
return nn.vocab.index(word.lower())
else:
return -1
cdef public void c_onehot(float* y, float* idxs, size_t n_idx):
oh = nn.onehot(np.asarray(<float[:n_idx]>idxs))
ensure_contiguous(oh)
memcpy(y, PyArray_DATA(oh), oh.size * sizeof(float))
cdef public void c_slices(float* X, float* idxs, size_t bs, size_t win):
X_np = np.asarray(<float[:bs,:2*win]>X)
idxs_np = np.asarray(<float[:bs + 2*win]>idxs)
for r in range(bs):
X_np[r, :win] = idxs_np[r:r+win]
X_np[r, win+1:] = idxs_np[r+win+1:r+2*win+1]
cdef public void debug_print(object o):
print(o)
eprint(o)
cdef public object create_network():
return nn.create_mnist_network()
cdef public object create_network(int win, int embed):
return nn.create_cbow_network(win, len(nn.vocab), embed)
cdef public void set_net_weights(object net, WeightList* wl):
@@ -46,16 +93,20 @@ cdef public void set_net_weights(object net, WeightList* wl):
cdef public void step_net(
object net, float* X, float* y, size_t batch_size
):
in_shape = (batch_size,) + net.layers[0].input_shape[1:]
out_shape = (batch_size,) + net.layers[-1].output_shape[1:]
in_shape = (batch_size,) + net.input_shape[1:]
out_shape = (batch_size,) + net.output_shape[1:]
X_train = np.asarray(<float[:np.prod(in_shape)]>X).reshape(in_shape)
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape)
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape),
net.train_on_batch(X_train, y_train)
cdef public size_t out_size(object net):
return np.prod(net.output_shape[1:])
cdef public float eval_net(object net):
return net.evaluate(X_test, y_test, verbose=False)[1]
return net.evaluate(X_test, y_test, verbose=False)
cdef public void mnist_batch(float* X, float* y, size_t bs,
@@ -74,8 +125,8 @@ cdef public void mnist_batch(float* X, float* y, size_t bs,
assert X_r.flags['C_CONTIGUOUS']
assert y_r.flags['C_CONTIGUOUS']
memcpy(X, <float*>PyArray_DATA(X_r), X_r.size * sizeof(float))
memcpy(y, <float*>PyArray_DATA(y_r), y_r.size * sizeof(float))
memcpy(X, PyArray_DATA(X_r), X_r.size * sizeof(float))
memcpy(y, PyArray_DATA(y_r), y_r.size * sizeof(float))
cdef public void init_weightlist_like(WeightList* wl, object net):
@@ -89,8 +140,7 @@ cdef public void init_weightlist_like(WeightList* wl, object net):
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
assert sh.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].shape, <long*>PyArray_DATA(sh),
sh.size * sizeof(long))
memcpy(wl.weights[i].shape, PyArray_DATA(sh), sh.size * sizeof(long))
cdef public void update_weightlist(WeightList* wl, object net):
@@ -99,8 +149,7 @@ cdef public void update_weightlist(WeightList* wl, object net):
w = w.astype(np.float32)
assert w.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].W, <float*>PyArray_DATA(w),
w.size * sizeof(float))
memcpy(wl.weights[i].W, PyArray_DATA(w), w.size * sizeof(float))
cdef public void combo_weights(
@@ -127,7 +176,36 @@ cdef list wrap_weight_list(WeightList* wl):
return weights
cdef void words_into_wordlist(WordList* wl, list words):
if wl.mem < len(words):
old = wl.mem
wl.mem = len(words)
wl.words = <Word*>realloc(wl.words, wl.mem * sizeof(Word))
for i in range(old, wl.mem):
wl.words[i].mem = 0
wl.words[i].data = <char*>0
wl.n_words = len(words)
for i, w in enumerate(words):
wenc = w.encode('utf-8')
if wl.words[i].mem < len(wenc) + 1:
wl.words[i].mem = len(wenc) + 1
wl.words[i].data = <char*>realloc(
wl.words[i].data, wl.words[i].mem * sizeof(char)
)
memcpy(wl.words[i].data, <char*>wenc, len(wenc) * sizeof(char))
wl.words[i].data[len(wenc)] = 0
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def ensure_contiguous(a):
assert a.flats['C_CONTIGUOUS']
def eprint(*args, **kwargs):
return print(*args, flush=True, **kwargs)

54
library.py Normal file
View File

@@ -0,0 +1,54 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize
from mynet import load_mnist, onehot
def word_tokenize(s: str):
l = ''.join(c if c.isalpha() else ' ' for c in s)
return l.split()
HERE = os.path.abspath(os.path.dirname(__file__))
CORPUS = os.path.join(HERE, 'melville-moby_dick.txt')
# sw = set(stopwords.words('english'))
sw = ['the']
vocab = list(set(
w.lower() for w in word_tokenize(open(CORPUS).read())
if w.isalpha() and not w.lower() in sw
))
def create_mnist_network():
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
return model
def create_cbow_network(win, vocab, embed):
ctxt = tf.keras.layers.Input(shape=[win])
ed = tf.keras.layers.Embedding(vocab, embed, input_length=win)(ctxt)
avgd = tf.keras.layers.Lambda(lambda x: tf.reduce_mean(x, axis=1))(ed)
mod = tf.keras.Model(inputs=ctxt, outputs=avgd)
mod.compile(
optimizer='sgd',
loss='categorical_crossentropy',
)
return mod
def token_generator(filename):
with open(filename) as f:
for l in f.readlines(500):
if not l.isspace():
tok = word_tokenize(l)
if tok:
yield tok

293
main.c
View File

@@ -1,7 +1,8 @@
#include "cythoned/library.h"
#include "cythoned/bridge.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpi.h>
#define TAG_IDGAF 0
@@ -10,10 +11,15 @@
#define TAG_WEIGH 3
#define TAG_READY 4
#define TAG_BREAK 5
#define TAG_STLEN 6
#define TAG_SWORD 7
#define TAG_IWORD 8
#define COMM 100
#define ITER 20
#define BS 50
#define EMB 20
#define WIN 2
#define FSPC 1
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
@@ -24,109 +30,75 @@
#define INFO_PRINTLN(what) \
do { fprintf(stderr, "%s\n", what); } while(0)
// char_stream -> tokenize -> word_strem -> filter + batch -> slave network
typedef enum{
DATA,
TOKENIZER,
FILTERER,
BATCHER,
SLAVE,
MASTER
} Role;
typedef struct IntQueue IntQueue;
struct IntQueue {
int head;
int tail;
size_t size;
int* data;
};
void queue_from_size(IntQueue* q, size_t s) {
q->data = malloc(s * sizeof(int));
q->size = s+1;
q->head = 0;
q->tail = 0;
}
void push_queue(IntQueue *q, int d) {
// Assuming queue is not full
q->data[q->tail] = d;
q->tail = (q->tail + 1) % q->size;
}
int pop_queue(IntQueue *q) {
int d = q->data[q->head];
q->head = (q->head + 1) % q->size;
return d;
}
int queue_empty(IntQueue *q) {
return q->head == q->tail;
}
int queue_full(IntQueue *q) {
return ((q->tail + 1) % q->size) == q->head;
}
int number_of_nodes() {
int world_size() {
int n;
MPI_Comm_size(MPI_COMM_WORLD, &n);
return n;
}
int number_of_masters() {
return 1;
}
int number_of_readers() {
return 1;
}
int number_of_slaves() {
return number_of_nodes() - number_of_masters() - number_of_readers();
}
int my_id() {
int my_mpi_id() {
int i;
MPI_Comm_rank(MPI_COMM_WORLD, &i);
return i;
}
int master_id(int m) {
return m;
size_t number_of(Role what) {
switch (what) {
case TOKENIZER:
return 1;
case FILTERER:
return 1;
case BATCHER:
return 1;
case SLAVE:
return world_size()
- number_of(TOKENIZER)
- number_of(FILTERER)
- number_of(BATCHER)
- number_of(MASTER);
case MASTER:
return 1;
}
}
int reader_id(int r) {
return r + number_of_masters();
int mpi_id_from_role_id(Role role, int rid) {
int base = 0;
for (Role r = TOKENIZER; r < role; r++) {
base += number_of(r);
}
return rid + base;
}
int slave_id(int s) {
return s + number_of_masters() + number_of_readers();
int role_id_from_mpi_id(Role role, int mid) {
int z = mpi_id_from_role_id(role, 0);
int rid = mid - z;
if (rid >= number_of(role) || rid < 0) {
INFO_PRINTF("%d is not a %d\n", mid, role);
exit(1);
}
return rid;
}
Role map_node() {
int node;
MPI_Comm_rank(MPI_COMM_WORLD, &node);
if (node >= reader_id(0) && node <= reader_id(number_of_readers()-1)) {
return DATA;
}
if (node >= master_id(0) && node <= master_id(number_of_masters()-1)) {
return MASTER;
}
if (node >= slave_id(0) && node <= slave_id(number_of_slaves()-1)) {
return SLAVE;
int node = my_mpi_id();
size_t base = 0;
for (Role r = TOKENIZER; r <= MASTER; r++) {
if (node < number_of(r) + base) return r;
base += number_of(r);
}
exit(1); // this is bad
}
int rid(int id, Role what) {
int z;
switch (what) {
case DATA: z = reader_id(0); break;
case SLAVE: z = slave_id(0); break;
case MASTER: z = master_id(0); break;
}
return id - z;
}
void free_weightlist(WeightList* wl) {
for in_range(i, wl->n_weights) {
free(wl->weights[i].shape);
@@ -135,27 +107,92 @@ void free_weightlist(WeightList* wl) {
free(wl->weights);
}
void data_reader() {
// Reads some data and converts it to a float array
INFO_PRINTF("Starting reader %d\n", getpid());
void free_word(Word* w) {
free(w->data);
w->data = NULL;
w->mem = 0;
}
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
void free_wordlist(WordList* wl) {
for in_range(i, wl->mem) {
free_word(wl->words + i);
}
free(wl->words);
wl->words = NULL;
wl->n_words = 0;
}
void send_word(Word* w, int dest) {
long len = strlen(w->data);
MPI_Send(&len, 1, MPI_LONG, dest, TAG_STLEN, MPI_COMM_WORLD);
MPI_Send(w->data, len + 1, MPI_CHAR, dest, TAG_SWORD, MPI_COMM_WORLD);
}
void recv_word(Word* w, int src) {
long len;
MPI_Recv(&len, 1, MPI_LONG, src, TAG_STLEN, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (w->mem < len + 1) {
w->mem = len + 1;
w->data = realloc(w->data, sizeof(char) * w->mem);
}
MPI_Recv(w->data, len + 1, MPI_CHAR, src, TAG_SWORD, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
}
void tokenizer(const char* source) {
WordList wl = {0, 0, NULL};
while (get_tokens(&wl, source)) {
for in_range(i, wl.n_words) {
send_word(&wl.words[i], mpi_id_from_role_id(FILTERER, 0));
// printf("OI %s\n", wl.words[i].data);
}
// INFO_PRINTLN("");
}
Word terminator = {0, ""};
send_word(&terminator, mpi_id_from_role_id(FILTERER, 0));
free_wordlist(&wl);
}
void filterer() {
Word w = {0, NULL};
while (1) {
recv_word(&w, role_id_from_mpi_id(TOKENIZER, 0));
if (!strlen(w.data)) {
break;
}
INFO_PRINTF("%s: ", w.data);
long idx = vocab_idx_of(&w);
INFO_PRINTF("%ld\n", idx);
// if (idx != -1) {
// MPI_Send(&idx, 1, MPI_LONG, mpi_id_from_role_id(BATCHER, 0),
// TAG_IWORD, MPI_COMM_WORLD);
// }
}
free_word(&w);
}
void batcher() {
// Reads some data and converts it to a float array
INFO_PRINTF("Starting batcher %d\n", getpid());
int s = 0;
const size_t n_words = BS + WIN + WIN;
float* f_widx = malloc(n_words * sizeof(float));
while (s != -1) {
for in_range(i, n_words) {
long l_wid;
MPI_Recv(&l_wid, 1, MPI_LONG, role_id_from_mpi_id(FILTERER, 0),
TAG_IWORD, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
f_widx[i] = (float)l_wid;
}
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
if (s != -1) {
mnist_batch(X, y, BS, rid(s, SLAVE), number_of_slaves());
MPI_Send(X, X_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
MPI_Send(y, y_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
MPI_Send(f_widx, n_words, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
}
}
free(X);
free(y);
free(f_widx);
}
void send_weights(const WeightList* wl, int dest, int tag) {
@@ -191,34 +228,39 @@ void slave_node() {
// 3. Do computations
// 4. Send weights back to master
INFO_PRINTF("Starting slave %d\n", getpid());
int me = my_mpi_id();
int me;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
size_t X_numel = 784 * BS;
size_t y_numel = 10 * BS;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
PyObject* net = create_network();
PyObject* net = create_network(WIN, EMB);
WeightList wl;
init_weightlist_like(&wl, net);
size_t vocab = out_size(net);
size_t n_words = (BS + WIN + WIN);
size_t X_numel = BS * (WIN + WIN);
size_t y_numel = BS * vocab;
float* X = malloc(X_numel * sizeof(float));
float* y = malloc(y_numel * sizeof(float));
float* f_widx = malloc(n_words * sizeof(float));
for in_range(i, COMM) {
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
recv_weights(&wl, master_id(0), TAG_WEIGH);
MPI_Send(&me, 1, MPI_INT, mpi_id_from_role_id(MASTER, 0),
TAG_READY, MPI_COMM_WORLD);
recv_weights(&wl, mpi_id_from_role_id(MASTER, 0), TAG_WEIGH);
set_net_weights(net, &wl);
for in_range(k, ITER) {
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
MPI_Recv(X, X_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Recv(y, y_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&me, 1, MPI_INT, mpi_id_from_role_id(BATCHER, 0),
TAG_READY, MPI_COMM_WORLD);
MPI_Recv(f_widx, n_words, MPI_FLOAT,
mpi_id_from_role_id(BATCHER, 0), TAG_BATCH, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
c_slices(X, f_widx, BS, WIN);
c_onehot(y, f_widx + WIN, BS);
step_net(net, X, y, BS);
}
printf("%d net: %f\n", my_id(), eval_net(net));
printf("%d net: %f\n", my_mpi_id(), eval_net(net));
update_weightlist(&wl, net);
send_weights(&wl, master_id(0), TAG_WEIGH);
send_weights(&wl, mpi_id_from_role_id(MASTER, 0), TAG_WEIGH);
}
Py_DECREF(net);
free_weightlist(&wl);
@@ -232,12 +274,12 @@ void master_node() {
// 3. Average the weights
PyObject* frank = create_network();
PyObject* frank = create_network(WIN, EMB);
WeightList wl;
init_weightlist_like(&wl, frank);
update_weightlist(&wl, frank);
int spr = number_of_slaves() * FSPC; // Slaves per round
int spr = number_of(SLAVE) * FSPC; // Slaves per round
int s;
WeightList *wls = malloc(sizeof(WeightList) * spr);
@@ -265,33 +307,40 @@ void master_node() {
free_weightlist(&wl);
for in_range(i, spr) free_weightlist(wls + i);
free(wls);
if (rid(my_id(), MASTER) == 0) {
for in_range(r, number_of_readers()) {
int stop = -1;
MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
MPI_COMM_WORLD);
}
}
// if (role_id_from_mpi_id(my_mpi_id(), MASTER) == 0) {
// for in_range(r, number_of(BATCHER)) {
// int stop = -1;
// MPI_Send(&stop, 1, MPI_INT, reader_id(r), TAG_READY,
// MPI_COMM_WORLD);
// }
// }
}
int main (int argc, const char **argv) {
MPI_Init(NULL, NULL);
// Cython Boilerplate
PyImport_AppendInittab("library", PyInit_library);
PyImport_AppendInittab("bridge", PyInit_bridge);
Py_Initialize();
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
PyObject* library_module = PyImport_ImportModule("library");
PyObject* bridge_module = PyImport_ImportModule("bridge");
// Actual Code
switch (map_node()) {
case DATA: data_reader(); break;
case SLAVE: slave_node(); break;
case MASTER: master_node(); break;
case TOKENIZER:
tokenizer(argv[1]);
break;
case FILTERER:
filterer();
break;
default:
INFO_PRINTLN("DYING HORRIBLY!");
// case SLAVE: slave_node(); break;
// case MASTER: master_node(); break;
}
// Finalizing Boilerplate
Py_DECREF(library_module);
Py_DECREF(bridge_module);
Py_Finalize();
MPI_Finalize();
}

View File

@@ -12,7 +12,7 @@ numpy_header = include_directories(run_command(
).stdout().strip())
executable(
'fedavg_mpi', 'main.c', 'cythoned/library.c',
'fedavg_mpi', 'main.c', 'cythoned/bridge.c',
dependencies: [mpi, python],
include_directories: numpy_header,
link_args: '-Wl,-w'

16
nn.py
View File

@@ -1,16 +0,0 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # STFU!
from mynet import load_mnist
def create_mnist_network():
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, input_shape=(784,), activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
return model