tokenizer and batcher are sane and work

i wonder how much pain it's gonna cause me to change
something in the code
This commit is contained in:
2019-11-30 22:16:42 -08:00
parent 04c35ed9b6
commit 101248965c
6 changed files with 321 additions and 156 deletions

211
bridge.pyx Normal file
View File

@@ -0,0 +1,211 @@
cimport numpy as np
import numpy as np
from sys import stderr
from libc.stdlib cimport malloc, realloc
from libc.string cimport memcpy
import library as nn
X_train, y_train, X_test, y_test = nn.load_mnist()
tokenizers = {}
cdef extern from "numpy/arrayobject.h":
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Weight:
size_t dims
long* shape
float* W
ctypedef public struct WeightList:
size_t n_weights;
Weight* weights;
ctypedef public struct Word:
size_t mem
char* data
ctypedef public struct WordList:
size_t mem
size_t n_words
Word* words
cdef public char *greeting():
return f'The value is {3**3**3}'.encode('utf-8')
cdef public int get_tokens(WordList* wl, const char *filename):
fnu = filename.decode('utf-8')
if fnu not in tokenizers:
tokenizers[fnu] = nn.token_generator(fnu)
g = tokenizers[fnu]
try:
words = next(g)
except StopIteration:
return 0
words_into_wordlist(wl, words)
return 1
cdef public long vocab_idx_of(Word* w):
word = w.data.decode('utf-8')
if word.lower() in nn.vocab:
return nn.vocab.index(word.lower())
else:
return -1
cdef public void c_onehot(float* y, float* idxs, size_t n_idx):
oh = nn.onehot(np.asarray(<float[:n_idx]>idxs))
ensure_contiguous(oh)
memcpy(y, PyArray_DATA(oh), oh.size * sizeof(float))
cdef public void c_slices(float* X, float* idxs, size_t bs, size_t win):
X_np = np.asarray(<float[:bs,:2*win]>X)
idxs_np = np.asarray(<float[:bs + 2*win]>idxs)
for r in range(bs):
X_np[r, :win] = idxs_np[r:r+win]
X_np[r, win+1:] = idxs_np[r+win+1:r+2*win+1]
cdef public void debug_print(object o):
eprint(o)
cdef public object create_network(int win, int embed):
return nn.create_cbow_network(win, len(nn.vocab), embed)
cdef public void set_net_weights(object net, WeightList* wl):
net.set_weights(wrap_weight_list(wl))
cdef public void step_net(
object net, float* X, float* y, size_t batch_size
):
in_shape = (batch_size,) + net.input_shape[1:]
out_shape = (batch_size,) + net.output_shape[1:]
X_train = np.asarray(<float[:np.prod(in_shape)]>X).reshape(in_shape)
y_train = np.asarray(<float[:np.prod(out_shape)]>y).reshape(out_shape),
net.train_on_batch(X_train, y_train)
cdef public size_t out_size(object net):
return np.prod(net.output_shape[1:])
cdef public float eval_net(object net):
return net.evaluate(X_test, y_test, verbose=False)
cdef public void mnist_batch(float* X, float* y, size_t bs,
int part, int total):
if total == 0:
X_pool, y_pool = X_train, y_train
else:
partsize = len(X_train) // total
X_pool = X_train[part*partsize:(part+1)*partsize]
y_pool = y_train[part*partsize:(part+1)*partsize]
idx = np.random.choice(len(X_pool), bs, replace=True)
X_r = X_pool[idx]
y_r = y_pool[idx]
assert X_r.flags['C_CONTIGUOUS']
assert y_r.flags['C_CONTIGUOUS']
memcpy(X, PyArray_DATA(X_r), X_r.size * sizeof(float))
memcpy(y, PyArray_DATA(y_r), y_r.size * sizeof(float))
cdef public void init_weightlist_like(WeightList* wl, object net):
weights = net.get_weights()
wl.n_weights = len(weights)
wl.weights = <Weight*>malloc(sizeof(Weight) * wl.n_weights)
for i, w in enumerate(weights):
sh = np.asarray(w.shape, dtype=long)
wl.weights[i].dims = sh.size
wl.weights[i].shape = <long*>malloc(sizeof(long) * sh.size)
wl.weights[i].W = <float*>malloc(sizeof(float) * w.size)
assert sh.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].shape, PyArray_DATA(sh), sh.size * sizeof(long))
cdef public void update_weightlist(WeightList* wl, object net):
weights = net.get_weights()
for i, w in enumerate(weights):
w = w.astype(np.float32)
assert w.flags['C_CONTIGUOUS']
memcpy(wl.weights[i].W, PyArray_DATA(w), w.size * sizeof(float))
cdef public void combo_weights(
WeightList* wl_frank, WeightList* wls, size_t num_weights
):
"""Not a one-liner anymore :/"""
alpha = 1. / num_weights
frank = wrap_weight_list(wl_frank)
for w in frank:
w[:] = 0
for i in range(num_weights):
for wf, ww in zip(frank, wrap_weight_list(&wls[i])):
wf += alpha * ww
cdef list wrap_weight_list(WeightList* wl):
weights = []
for i in range(wl.n_weights):
w_shape = <long[:wl.weights[i].dims]>wl.weights[i].shape
w_numel = np.prod(w_shape)
weights.append(
np.asarray(<float[:w_numel]>wl.weights[i].W).reshape(w_shape)
)
return weights
cdef void words_into_wordlist(WordList* wl, list words):
if wl.mem < len(words):
old = wl.mem
wl.mem = len(words)
wl.words = <Word*>realloc(wl.words, wl.mem * sizeof(Word))
for i in range(old, wl.mem):
wl.words[i].mem = 0
wl.words[i].data = <char*>0
wl.n_words = len(words)
for i, w in enumerate(words):
wenc = w.encode('utf-8')
if wl.words[i].mem < len(wenc) + 1:
wl.words[i].mem = len(wenc) + 1
wl.words[i].data = <char*>realloc(
wl.words[i].data, wl.words[i].mem * sizeof(char)
)
memcpy(wl.words[i].data, <char*>wenc, len(wenc) * sizeof(char))
wl.words[i].data[len(wenc)] = 0
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def ensure_contiguous(a):
assert a.flats['C_CONTIGUOUS']
def eprint(*args, **kwargs):
return print(*args, flush=True, **kwargs)