a great work has been done here
now there is no mentioning python in c code (except for the boilerplate at the beginning, but the rest is nice clean c). all the bridging is being done in cython (where it belongs). and no memory leaks so there's that!
This commit is contained in:
73
main.c
73
main.c
@@ -1,17 +1,15 @@
|
||||
#include <Python.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <mpi.h>
|
||||
|
||||
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
||||
#include <numpy/arrayobject.h>
|
||||
|
||||
#include "library.h"
|
||||
|
||||
#define P_READER 0
|
||||
#define P_SLAVE 1
|
||||
#define P_MASTER 2
|
||||
|
||||
#define COMM 50
|
||||
#define COMM 500
|
||||
#define ITER 32
|
||||
#define BS 32
|
||||
|
||||
@@ -24,24 +22,20 @@ typedef enum{
|
||||
|
||||
// Reads some data and converts it to 2D float array
|
||||
void data_reader() {
|
||||
size_t batch_numel = (784 + 10) * BS;
|
||||
float* batch = malloc(batch_numel * sizeof(float));
|
||||
while (1) {
|
||||
PyArrayObject* batch = mnist_batch(BS);
|
||||
|
||||
long* shape = PyArray_SHAPE(batch);
|
||||
MPI_Send(shape, 2, MPI_LONG, P_SLAVE, 0, MPI_COMM_WORLD);
|
||||
MPI_Send(PyArray_DATA(batch), PyArray_SIZE(batch), MPI_FLOAT,
|
||||
P_SLAVE, 0, MPI_COMM_WORLD);
|
||||
Py_DECREF(batch);
|
||||
mnist_batch(batch, BS);
|
||||
MPI_Send(batch, batch_numel, MPI_FLOAT, P_SLAVE, 0, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
|
||||
void send_network(Network* c_net, int dest, int tag) {
|
||||
Py_ssize_t n_layers = c_net->n_layers;
|
||||
void send_network(const Network* c_net, int dest, int tag) {
|
||||
size_t n_layers = c_net->n_layers;
|
||||
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
|
||||
for (Py_ssize_t i = 0; i < n_layers; i++) {
|
||||
for (size_t i = 0; i < n_layers; i++) {
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
long d1 = c_net->layers[i].shape[1];
|
||||
|
||||
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
|
||||
MPI_COMM_WORLD);
|
||||
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
|
||||
@@ -52,10 +46,11 @@ void send_network(Network* c_net, int dest, int tag) {
|
||||
}
|
||||
|
||||
void recv_network(Network* c_net, int src, int tag) {
|
||||
// Creates a new network at c_net
|
||||
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
|
||||
for (Py_ssize_t i = 0; i < c_net->n_layers; i++) {
|
||||
for (size_t i = 0; i < c_net->n_layers; i++) {
|
||||
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
@@ -71,7 +66,7 @@ void recv_network(Network* c_net, int src, int tag) {
|
||||
}
|
||||
|
||||
void free_network_contents(Network* c_net) {
|
||||
for (Py_ssize_t i = 0; i < c_net->n_layers; i++) {
|
||||
for (size_t i = 0; i < c_net->n_layers; i++) {
|
||||
if (c_net->layers[i].ownmem) {
|
||||
free(c_net->layers[i].b);
|
||||
free(c_net->layers[i].W);
|
||||
@@ -82,43 +77,43 @@ void free_network_contents(Network* c_net) {
|
||||
|
||||
// Receives weight updates and trains, sends learned weights back to master
|
||||
void slave_node() {
|
||||
PyObject* net = create_network();
|
||||
Network net;
|
||||
create_c_network(&net);
|
||||
|
||||
size_t batch_numel = (784 + 10) * BS;
|
||||
float* batch = malloc(batch_numel * sizeof(float));
|
||||
|
||||
for (int i = 0; i < COMM; i++) {
|
||||
char go;
|
||||
MPI_Recv(&go, 1, MPI_CHAR, P_MASTER, MPI_ANY_TAG, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
for (int k = 0; k < ITER; k++) {
|
||||
long shape[2];
|
||||
MPI_Recv(shape, 2, MPI_LONG, P_READER, MPI_ANY_TAG, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
long size = shape[0] * shape[1];
|
||||
float* batch = malloc(shape[0] * shape[1] * sizeof(float));
|
||||
MPI_Recv(batch, size, MPI_FLOAT, P_READER, MPI_ANY_TAG,
|
||||
MPI_Recv(batch, batch_numel, MPI_FLOAT, P_READER, MPI_ANY_TAG,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
step_net(net, batch, BS);
|
||||
free(batch);
|
||||
step_net(&net, batch, BS);
|
||||
}
|
||||
Network c_net;
|
||||
cify_network(net, &c_net);
|
||||
send_network(&c_net, P_MASTER, 0);
|
||||
free_network_contents(&c_net);
|
||||
printf("Net: %f\n", eval_net(&net));
|
||||
send_network(&net, P_MASTER, 0);
|
||||
}
|
||||
Py_DECREF(net);
|
||||
|
||||
free(batch);
|
||||
free_network_contents(&net);
|
||||
}
|
||||
|
||||
// Stores most up-to-date model, sends it to slaves for training
|
||||
void master_node() {
|
||||
PyObject* frank = create_network();
|
||||
Network frank;
|
||||
create_c_network(&frank);
|
||||
for (int i = 0; i < COMM; i++) {
|
||||
char go;
|
||||
MPI_Send(&go, 1, MPI_CHAR, P_SLAVE, 0, MPI_COMM_WORLD);
|
||||
Network c_net;
|
||||
recv_network(&c_net, P_SLAVE, MPI_ANY_TAG);
|
||||
be_like_cified(frank, &c_net);
|
||||
free_network_contents(&c_net);
|
||||
printf("Frank: %f\n", eval_net(frank));
|
||||
Network net;
|
||||
recv_network(&net, P_SLAVE, MPI_ANY_TAG);
|
||||
be_like(&frank, &net);
|
||||
free_network_contents(&net);
|
||||
printf("Frank: %f\n", eval_net(&frank));
|
||||
}
|
||||
Py_DECREF(frank);
|
||||
free_network_contents(&frank);
|
||||
}
|
||||
|
||||
Role map_node() {
|
||||
@@ -136,7 +131,7 @@ int main (int argc, const char **argv) {
|
||||
// Cython Boilerplate
|
||||
PyImport_AppendInittab("library", PyInit_library);
|
||||
Py_Initialize();
|
||||
import_array();
|
||||
// import_array();
|
||||
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
|
||||
PyObject* library_module = PyImport_ImportModule("library");
|
||||
|
||||
|
||||
Reference in New Issue
Block a user