reached some mildly amusing result
of slaves having "independent" data sources and master still training through them
This commit is contained in:
23
library.pyx
23
library.pyx
@@ -27,7 +27,7 @@ ctypedef public struct Network:
|
||||
Dense* layers;
|
||||
|
||||
|
||||
cdef public char * greeting():
|
||||
cdef public char *greeting():
|
||||
return f'The value is {3**3**3}'.encode('utf-8')
|
||||
|
||||
|
||||
@@ -52,6 +52,7 @@ cdef public void step_net(
|
||||
cdef size_t in_dim = net.geometry[0]
|
||||
cdef size_t out_dim = net.geometry[-1]
|
||||
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
|
||||
# print(np.argmax(batch[:, in_dim:], axis=1), flush=True)
|
||||
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
|
||||
|
||||
|
||||
@@ -60,9 +61,17 @@ cdef public float eval_net(Network* c_net):
|
||||
return net.evaluate(X_test, y_test, 'cls')
|
||||
|
||||
|
||||
cdef public void mnist_batch(float* batch, size_t bs):
|
||||
idx = np.random.choice(len(X_train), bs, replace=False)
|
||||
arr = np.concatenate([X_train[idx], y_train[idx]], axis=1)
|
||||
cdef public void mnist_batch(float* batch, size_t bs, int part, int total):
|
||||
if total == 0:
|
||||
X_pool, y_pool = X_train, y_train
|
||||
else:
|
||||
partsize = len(X_train) // total
|
||||
X_pool = X_train[part*partsize:(part+1)*partsize]
|
||||
y_pool = y_train[part*partsize:(part+1)*partsize]
|
||||
|
||||
idx = np.random.choice(len(X_pool), bs, replace=True)
|
||||
arr = np.concatenate([X_pool[idx], y_pool[idx]], axis=1)
|
||||
assert arr.flags['C_CONTIGUOUS']
|
||||
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
|
||||
|
||||
|
||||
@@ -76,6 +85,8 @@ cdef public void create_c_network(Network* c_net):
|
||||
c_net.layers[i].shape[1] = d1
|
||||
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
|
||||
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
|
||||
assert l.W.flags['C_CONTIGUOUS']
|
||||
assert l.b.flags['C_CONTIGUOUS']
|
||||
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
|
||||
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
|
||||
c_net.layers[i].ownmem = 1
|
||||
@@ -101,7 +112,7 @@ cdef object wrap_c_network(Network* c_net):
|
||||
"""Create a thin wrapper not owning the memory."""
|
||||
net = create_network(init=False)
|
||||
for i, l in enumerate(net.layers):
|
||||
d0, d1 = l.W.shape
|
||||
d0, d1 = c_net.layers[i].shape[0], c_net.layers[i].shape[1]
|
||||
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
|
||||
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
|
||||
return net
|
||||
@@ -114,7 +125,7 @@ def inspect_array(a):
|
||||
|
||||
|
||||
def create_network(init=True):
|
||||
return mn.Network((784, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
|
||||
return mn.Network((784, 30, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
|
||||
initialize=init)
|
||||
|
||||
|
||||
|
||||
168
main.c
168
main.c
@@ -4,10 +4,6 @@
|
||||
#include <stdlib.h>
|
||||
#include <mpi.h>
|
||||
|
||||
#define P_READER 0
|
||||
#define P_MASTER 1
|
||||
#define P_SLAVE 2
|
||||
|
||||
#define TAG_IDGAF 0
|
||||
#define TAG_BATCH 1
|
||||
#define TAG_NETWK 2
|
||||
@@ -15,23 +11,25 @@
|
||||
#define TAG_READY 4
|
||||
|
||||
#define COMM 500
|
||||
#define ITER 40
|
||||
#define ITER 120
|
||||
#define BS 50
|
||||
#define FSPC 0.2
|
||||
#define FSPC 0.4
|
||||
|
||||
#define sid(s) s + P_SLAVE
|
||||
|
||||
#define s_in_slaves(w) (size_t s = 0; s < w - P_SLAVE; s++)
|
||||
#define i_in_range(x) (size_t i = 0; i < x; i++)
|
||||
#define in_range(i, x) (size_t (i) = 0; (i) < (x); (i)++)
|
||||
// I am honestly VERY sorry for this but power corrupts even the best of us
|
||||
|
||||
#define INFO_PRINTF(fmt, ...) \
|
||||
do { fprintf(stderr, fmt, __VA_ARGS__); } while(0)
|
||||
#define INFO_PRINTLN(what) \
|
||||
do { fprintf(stderr, "%s\n", what); } while(0)
|
||||
|
||||
|
||||
typedef enum{
|
||||
DATA,
|
||||
SLAVE,
|
||||
MASTER
|
||||
} Role;
|
||||
|
||||
|
||||
typedef struct IntQueue IntQueue;
|
||||
struct IntQueue {
|
||||
int head;
|
||||
@@ -67,6 +65,67 @@ int queue_full(IntQueue *q) {
|
||||
return ((q->tail + 1) % q->size) == q->head;
|
||||
}
|
||||
|
||||
int number_of_nodes() {
|
||||
int n;
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &n);
|
||||
return n;
|
||||
}
|
||||
|
||||
int number_of_masters() {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int number_of_readers() {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int number_of_slaves() {
|
||||
return number_of_nodes() - number_of_masters() - number_of_readers();
|
||||
}
|
||||
|
||||
int my_id() {
|
||||
int i;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &i);
|
||||
return i;
|
||||
}
|
||||
|
||||
int master_id(int m) {
|
||||
return m;
|
||||
}
|
||||
|
||||
int reader_id(int r) {
|
||||
return r + number_of_masters();
|
||||
}
|
||||
|
||||
int slave_id(int s) {
|
||||
return s + number_of_masters() + number_of_readers();
|
||||
}
|
||||
|
||||
Role map_node() {
|
||||
int node;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &node);
|
||||
if (node >= reader_id(0) && node <= reader_id(number_of_readers()-1)) {
|
||||
return DATA;
|
||||
}
|
||||
if (node >= master_id(0) && node <= master_id(number_of_masters()-1)) {
|
||||
return MASTER;
|
||||
}
|
||||
if (node >= slave_id(0) && node <= slave_id(number_of_slaves()-1)) {
|
||||
return SLAVE;
|
||||
}
|
||||
exit(1); // this is bad
|
||||
}
|
||||
|
||||
int rid(int id, Role what) {
|
||||
int z;
|
||||
switch (what) {
|
||||
case DATA: z = reader_id(0); break;
|
||||
case SLAVE: z = slave_id(0); break;
|
||||
case MASTER: z = master_id(0); break;
|
||||
}
|
||||
return id - z;
|
||||
}
|
||||
|
||||
void data_reader() {
|
||||
// Reads some data and converts it to a float array
|
||||
printf("Start reader\n");
|
||||
@@ -77,7 +136,7 @@ void data_reader() {
|
||||
while (1) {
|
||||
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
mnist_batch(batch, BS);
|
||||
mnist_batch(batch, BS, rid(s, SLAVE), number_of_slaves());
|
||||
MPI_Send(batch, batch_numel, MPI_FLOAT, s, TAG_BATCH, MPI_COMM_WORLD);
|
||||
}
|
||||
free(batch);
|
||||
@@ -86,7 +145,7 @@ void data_reader() {
|
||||
void send_weights(const Network* c_net, int dest, int tag) {
|
||||
// This assumes that the receiving end has a fully initialized network
|
||||
// Of the same arch as `c_net`
|
||||
for i_in_range(c_net->n_layers) {
|
||||
for in_range(i, c_net->n_layers) {
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
long d1 = c_net->layers[i].shape[1];
|
||||
MPI_Send(c_net->layers[i].W, d0 * d1, MPI_FLOAT, dest, tag,
|
||||
@@ -99,7 +158,7 @@ void send_weights(const Network* c_net, int dest, int tag) {
|
||||
void recv_weights(const Network* c_net, int src, int tag) {
|
||||
// This assumes that the sender is going to send stuff that is going
|
||||
// To fit exactly into the c_net
|
||||
for i_in_range(c_net->n_layers) {
|
||||
for in_range(i, c_net->n_layers) {
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
long d1 = c_net->layers[i].shape[1];
|
||||
MPI_Recv(c_net->layers[i].W, d0 * d1, MPI_FLOAT, src, tag,
|
||||
@@ -114,7 +173,7 @@ void send_network(const Network* c_net, int dest, int tag) {
|
||||
// It's best to receive with `recv_network`
|
||||
size_t n_layers = c_net->n_layers;
|
||||
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
|
||||
for i_in_range(c_net->n_layers) {
|
||||
for in_range(i, c_net->n_layers) {
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
long d1 = c_net->layers[i].shape[1];
|
||||
MPI_Send(c_net->layers[i].shape, 2, MPI_LONG, dest, tag,
|
||||
@@ -131,7 +190,7 @@ void recv_network(Network* c_net, int src, int tag) {
|
||||
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
|
||||
for i_in_range(c_net->n_layers) {
|
||||
for in_range(i, c_net->n_layers) {
|
||||
MPI_Recv(&c_net->layers[i].shape, 2, MPI_LONG, src, tag,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
long d0 = c_net->layers[i].shape[0];
|
||||
@@ -148,7 +207,7 @@ void recv_network(Network* c_net, int src, int tag) {
|
||||
|
||||
void free_network_contents(Network* c_net) {
|
||||
// Cleans up the net
|
||||
for i_in_range(c_net->n_layers) {
|
||||
for in_range(i, c_net->n_layers) {
|
||||
if (c_net->layers[i].ownmem) {
|
||||
free(c_net->layers[i].b);
|
||||
free(c_net->layers[i].W);
|
||||
@@ -160,8 +219,12 @@ void free_network_contents(Network* c_net) {
|
||||
}
|
||||
}
|
||||
|
||||
// Receives weight updates and trains, sends learned weights back to master
|
||||
void slave_node() {
|
||||
// 0. Announce readiness?
|
||||
// 1. Receive weights from master ([ ] has to know its master)
|
||||
// 2. Request batch from reader ([ ] has to choose a reader)
|
||||
// 3. Do computations
|
||||
// 4. Send weights back to master
|
||||
printf("Start slave\n");
|
||||
|
||||
int me;
|
||||
@@ -172,67 +235,62 @@ void slave_node() {
|
||||
Network net;
|
||||
create_c_network(&net);
|
||||
|
||||
for i_in_range(COMM) {
|
||||
MPI_Send(&me, 1, MPI_INT, P_MASTER, TAG_READY, MPI_COMM_WORLD);
|
||||
recv_weights(&net, P_MASTER, TAG_NETWK);
|
||||
for (int k = 0; k < ITER; k++) {
|
||||
MPI_Send(&me, 1, MPI_INT, P_READER, TAG_READY, MPI_COMM_WORLD);
|
||||
MPI_Recv(batch, batch_numel, MPI_FLOAT, P_READER, TAG_BATCH,
|
||||
for in_range(i, COMM) {
|
||||
// INFO_PRINTF("%d announcing itself\n", my_id());
|
||||
MPI_Send(&me, 1, MPI_INT, master_id(0), TAG_READY, MPI_COMM_WORLD);
|
||||
// INFO_PRINTF("%d waitng for weights from %d\n", my_id(), master_id(0));
|
||||
recv_weights(&net, master_id(0), TAG_WEIGH);
|
||||
// INFO_PRINTF("%d an answer!\n", my_id());
|
||||
for in_range(k, ITER) {
|
||||
MPI_Send(&me, 1, MPI_INT, reader_id(0), TAG_READY, MPI_COMM_WORLD);
|
||||
MPI_Recv(batch, batch_numel, MPI_FLOAT, reader_id(0), TAG_BATCH,
|
||||
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
|
||||
step_net(&net, batch, BS);
|
||||
}
|
||||
printf("Net: %f\n", eval_net(&net));
|
||||
send_weights(&net, P_MASTER, TAG_WEIGH);
|
||||
printf("%d net: %f\n", my_id(), eval_net(&net));
|
||||
send_weights(&net, master_id(0), TAG_WEIGH);
|
||||
}
|
||||
free_network_contents(&net);
|
||||
free(batch);
|
||||
}
|
||||
|
||||
void master_node() {
|
||||
// Stores most up-to-date model, sends it to slaves for training
|
||||
// First do it synchronously
|
||||
// Need a "slave registry"
|
||||
printf("Start master\n");
|
||||
// 0. Initialize model
|
||||
|
||||
int world_size;
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
|
||||
// 1. Send it to some slaves for processing (synchronous)
|
||||
// 2. Receive weights back (synchronous)
|
||||
// 3. Average the weights
|
||||
|
||||
printf("Start master\n");
|
||||
|
||||
Network frank;
|
||||
create_c_network(&frank);
|
||||
|
||||
// It's better to have more memory than needed
|
||||
// Than less memory than needed
|
||||
// Kong Fuzi
|
||||
Network* nets = malloc(sizeof(Network) * world_size);
|
||||
for s_in_slaves(world_size) create_c_network(nets + s);
|
||||
int spr = number_of_slaves() * FSPC; // Slaves per round
|
||||
int s;
|
||||
|
||||
IntQueue slave_queue;
|
||||
queue_from_size(&slave_queue, world_size - P_SLAVE);
|
||||
Network *nets = malloc(sizeof(Network) * spr);
|
||||
int *handles = malloc(sizeof(int) * spr);
|
||||
|
||||
for i_in_range(COMM) {
|
||||
for s_in_slaves(world_size) {
|
||||
send_weights(&frank, sid(s), TAG_WEIGH);
|
||||
for in_range(i, spr) create_c_network(nets + i);
|
||||
for in_range(i, COMM) {
|
||||
|
||||
for in_range(k, spr) {
|
||||
MPI_Recv(&s, 1, MPI_INT, MPI_ANY_SOURCE, TAG_READY, MPI_COMM_WORLD,
|
||||
MPI_STATUS_IGNORE);
|
||||
send_weights(&frank, s, TAG_WEIGH);
|
||||
handles[k] = s;
|
||||
}
|
||||
for s_in_slaves(world_size) {
|
||||
recv_weights(nets + s, sid(s), TAG_WEIGH);
|
||||
for in_range(k, spr) {
|
||||
recv_weights(nets + k, handles[k], TAG_WEIGH);
|
||||
}
|
||||
combo_c_net(&frank, nets, world_size - P_SLAVE);
|
||||
combo_c_net(&frank, nets, spr);
|
||||
printf("Frank: %f\n", eval_net(&frank));
|
||||
}
|
||||
free_network_contents(&frank);
|
||||
free(nets);
|
||||
}
|
||||
|
||||
Role map_node() {
|
||||
int node;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &node);
|
||||
if (node == P_READER) return DATA;
|
||||
if (node == P_MASTER) return MASTER;
|
||||
if (node >= P_SLAVE) return SLAVE;
|
||||
|
||||
exit(1); // this is bad
|
||||
}
|
||||
|
||||
int main (int argc, const char **argv) {
|
||||
MPI_Init(NULL, NULL);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user