Files
fedavg_mpi/library.pyx

130 lines
3.4 KiB
Cython

cimport numpy as np
import numpy as np
import mynet as mn
from libc.stdlib cimport malloc
from libc.string cimport memcpy
ctr = []
X_train, y_train, X_test, y_test = mn.load_mnist()
opt = mn.SGDOptimizer(lr=0.1)
cdef extern from "numpy/arrayobject.h":
void *PyArray_DATA(np.ndarray arr)
ctypedef public struct Dense:
long[2] shape
int ownmem
float* W
float* b
ctypedef public struct Network:
size_t n_layers;
Dense* layers;
cdef public char * greeting():
return f'The value is {3**3**3}'.encode('utf-8')
cdef public void debug_print(object o):
print(o)
cdef public void predict(
Network* net,
float* X,
size_t batch_size
):
pass
cdef public void step_net(
Network* c_net,
float* batch_data,
size_t batch_size
):
net = wrap_c_network(c_net)
cdef size_t in_dim = net.geometry[0]
cdef size_t out_dim = net.geometry[-1]
batch = np.asarray(<float[:batch_size,:in_dim+out_dim]>batch_data)
net.step(batch[:, :in_dim], batch[:, in_dim:], opt)
cdef public float eval_net(Network* c_net):
net = wrap_c_network(c_net)
return net.evaluate(X_test, y_test, 'cls')
cdef public void mnist_batch(float* batch, size_t bs):
idx = np.random.choice(len(X_train), bs, replace=False)
arr = np.concatenate([X_train[idx], y_train[idx]], axis=1)
memcpy(batch, <float*>PyArray_DATA(arr), arr.size*sizeof(float))
cdef public void create_c_network(Network* c_net):
net = create_network()
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
c_net.layers[i].shape[0] = d0
c_net.layers[i].shape[1] = d1
c_net.layers[i].W = <float*>malloc(sizeof(float) * d0 * d1)
c_net.layers[i].b = <float*>malloc(sizeof(float) * d1)
memcpy(c_net.layers[i].W, PyArray_DATA(l.W), sizeof(float) * d0 * d1)
memcpy(c_net.layers[i].b, PyArray_DATA(l.b), sizeof(float) * d1)
c_net.layers[i].ownmem = 1
cdef public void frankenstein(Network* c_frank, Network* c_nets,
size_t num_nets):
"""ONE-LINER HOW BOUT THAT HUH."""
combo_net(
wrap_c_network(c_frank),
[wrap_c_network(&c_nets[i]) for i in range(num_nets)]
)
cdef public void be_like(Network* c_dst, Network* c_src):
"""Conveniently transform one C network into another."""
dst = wrap_c_network(c_dst)
src = wrap_c_network(c_src)
dst.be_like(src)
cdef object wrap_c_network(Network* c_net):
"""Create a thin wrapper not owning the memory."""
net = create_network(init=False)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
l.b = np.asarray(<float[:d1]>c_net.layers[i].b)
return net
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def create_network(init=True):
return mn.Network((784, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
initialize=init)
def combo_net(net, nets, alpha=None):
tot = len(nets)
if alpha is None:
alpha = [1 / tot] * tot
for l in net.layers:
l.set_weights(np.zeros_like(t) for t in l.trainables())
for n, a in zip(nets, alpha):
for la, lb in zip(n.layers, net.layers):
lb.update(t * a for t in la.trainables())