implemented a very smooth frankenstein function

This commit is contained in:
2019-11-25 22:37:34 -08:00
parent 76f8d7dcb6
commit 725130e51f
2 changed files with 45 additions and 30 deletions

View File

@@ -41,10 +41,6 @@ cdef public void predict(
size_t batch_size
):
pass
# try:
# return net(X)
# except Exception as e:
# print(e)
cdef public void step_net(
@@ -71,7 +67,7 @@ cdef public void mnist_batch(float* batch, size_t bs):
cdef public void create_c_network(Network* c_net):
net = _create_network()
net = create_network()
c_net.n_layers = len(net.layers)
c_net.layers = <Dense*>malloc(sizeof(Dense) * c_net.n_layers)
for i, l in enumerate(net.layers):
@@ -85,14 +81,25 @@ cdef public void create_c_network(Network* c_net):
c_net.layers[i].ownmem = 1
cdef public void frankenstein(Network* c_frank, Network* c_nets,
size_t num_nets):
"""ONE-LINER HOW BOUT THAT HUH."""
combo_net(
wrap_c_network(c_frank),
[wrap_c_network(&c_nets[i]) for i in range(num_nets)]
)
cdef public void be_like(Network* c_dst, Network* c_src):
"""Conveniently transform one C network into another."""
dst = wrap_c_network(c_dst)
src = wrap_c_network(c_src)
dst.be_like(src)
cdef object wrap_c_network(Network* c_net):
net = _create_network(init=False)
"""Create a thin wrapper not owning the memory."""
net = create_network(init=False)
for i, l in enumerate(net.layers):
d0, d1 = l.W.shape
l.W = np.asarray(<float[:d0,:d1]>c_net.layers[i].W)
@@ -100,18 +107,23 @@ cdef object wrap_c_network(Network* c_net):
return net
cdef void inspect_array(
np.ndarray[np.float32_t, ndim=2, mode='c'] a
):
def inspect_array(a):
print(a.flags, flush=True)
print(a.dtype, flush=True)
print(a.sum(), flush=True)
def _create_network(init=True):
def create_network(init=True):
return mn.Network((784, 10), mn.relu, mn.sigmoid, mn.bin_x_entropy,
initialize=init)
def combo_net(nets):
return mn.combo_net(nets)
def combo_net(net, nets, alpha=None):
tot = len(nets)
if alpha is None:
alpha = [1 / tot] * tot
for l in net.layers:
l.set_weights(np.zeros_like(t) for t in l.trainables())
for n, a in zip(nets, alpha):
for la, lb in zip(n.layers, net.layers):
lb.update(t * a for t in la.trainables())

39
main.c
View File

@@ -1,10 +1,9 @@
#include <Python.h>
#include "library.h"
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include "library.h"
#define P_READER 0
#define P_SLAVE 1
#define P_MASTER 2
@@ -19,18 +18,21 @@ typedef enum{
MASTER
} Role;
// Reads some data and converts it to 2D float array
void data_reader() {
// Reads some data and converts it to a float array
printf("Start reader\n");
size_t batch_numel = (784 + 10) * BS;
float* batch = malloc(batch_numel * sizeof(float));
while (1) {
mnist_batch(batch, BS);
MPI_Send(batch, batch_numel, MPI_FLOAT, P_SLAVE, 0, MPI_COMM_WORLD);
}
free(batch);
}
void send_network(const Network* c_net, int dest, int tag) {
// Send a network to the expecting destination
// It's best to receive with `recv_network`
size_t n_layers = c_net->n_layers;
MPI_Send(&n_layers, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
for (size_t i = 0; i < n_layers; i++) {
@@ -46,7 +48,7 @@ void send_network(const Network* c_net, int dest, int tag) {
}
void recv_network(Network* c_net, int src, int tag) {
// Creates a new network at c_net
// Creates a new network at c_net (all pointers will be lost so beware)
MPI_Recv(&c_net->n_layers, 1, MPI_LONG, src, tag, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
c_net->layers = malloc(sizeof(Dense) * c_net->n_layers);
@@ -66,6 +68,7 @@ void recv_network(Network* c_net, int src, int tag) {
}
void free_network_contents(Network* c_net) {
// Cleans up the net
for (size_t i = 0; i < c_net->n_layers; i++) {
if (c_net->layers[i].ownmem) {
free(c_net->layers[i].b);
@@ -73,10 +76,12 @@ void free_network_contents(Network* c_net) {
}
}
free(c_net->layers);
c_net->layers = NULL; // So that you don't get any ideas
}
// Receives weight updates and trains, sends learned weights back to master
void slave_node() {
printf("Start slave\n");
Network net;
create_c_network(&net);
@@ -102,6 +107,7 @@ void slave_node() {
// Stores most up-to-date model, sends it to slaves for training
void master_node() {
printf("Start master\n");
Network frank;
create_c_network(&frank);
for (int i = 0; i < COMM; i++) {
@@ -109,7 +115,7 @@ void master_node() {
MPI_Send(&go, 1, MPI_CHAR, P_SLAVE, 0, MPI_COMM_WORLD);
Network net;
recv_network(&net, P_SLAVE, MPI_ANY_TAG);
be_like(&frank, &net);
frankenstein(&frank, &net, 1);
free_network_contents(&net);
printf("Frank: %f\n", eval_net(&frank));
}
@@ -119,10 +125,11 @@ void master_node() {
Role map_node() {
int node;
MPI_Comm_rank(MPI_COMM_WORLD, &node);
if (node == 0) return DATA;
if (node == 1) return SLAVE;
if (node == 2) return MASTER;
return SLAVE;
if (node == P_READER) return DATA;
if (node == P_MASTER) return MASTER;
if (node == P_SLAVE) return SLAVE;
exit(1); // this is bad
}
int main (int argc, const char **argv) {
@@ -131,18 +138,14 @@ int main (int argc, const char **argv) {
// Cython Boilerplate
PyImport_AppendInittab("library", PyInit_library);
Py_Initialize();
// import_array();
PyRun_SimpleString("import sys\nsys.path.insert(0,'')");
PyObject* library_module = PyImport_ImportModule("library");
// Actual Code
switch (map_node()) {
case DATA: data_reader();
break;
case SLAVE: slave_node();
break;
case MASTER: master_node();
break;
case DATA: data_reader(); break;
case SLAVE: slave_node(); break;
case MASTER: master_node(); break;
}
// Finalizing Boilerplate