guess what? - refactoring! also masking out field

This commit is contained in:
2018-06-20 20:38:11 +02:00
parent a5e6059d3c
commit 0b53d11861
6 changed files with 217 additions and 89 deletions

View File

@@ -11,8 +11,8 @@ class GoalFinder(object):
def __init__(self, hsv_lower, hsv_upper):
self.hsv_lower = hsv_lower
self.hsv_upper = hsv_upper
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
def goal_similarity(self, contour):
contour = contour.squeeze(axis=1)
@@ -33,7 +33,7 @@ class GoalFinder(object):
# Final similarity score is just the sum of both
final_score = shape_sim + area_sim
print('Candidate:', shape_sim, area_sim, final_score)
print('Goal candidate:', shape_sim, area_sim, final_score)
return final_score
def find_goal_contour(self, frame):
@@ -68,7 +68,7 @@ class GoalFinder(object):
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
best = min(similarities)
print('Final score:', best)
print('Final goal score:', best)
print()
if best > 0.35:
return None
@@ -83,8 +83,7 @@ class GoalFinder(object):
l, r = self.left_right_post(self, contour)
return (l + r) / 2
def draw(self, frame):
goal = self.find_goal_contour(frame)
def draw(self, frame, goal):
if goal is not None:
cv2.drawContours(frame, (goal,), -1, (0, 255, 0), 2)
@@ -93,8 +92,8 @@ class BallFinder(object):
def __init__(self, hsv_lower, hsv_upper, min_radius):
self.hsv_lower = hsv_lower
self.hsv_upper = hsv_upper
self.hsv_lower = tuple(hsv_lower)
self.hsv_upper = tuple(hsv_upper)
self.min_radius = min_radius
self.history = deque(maxlen=64)
@@ -102,55 +101,56 @@ class BallFinder(object):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color, then perform a series of
# dilations and erosions to remove any small blobs left in the mask
# dilations and erosions to remove any small blobs left in the mask ?
mask = cv2.inRange(hsv, self.hsv_lower, self.hsv_upper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# mask = cv2.erode(mask, None, iterations=2)
# mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
# only proceed if at least one contour was found
if len(cnts) == 0:
print('No red contours')
self.history.appendleft(None)
return None
# find the largest contour in the mask, then use it to compute
# the minimum enclosing circle and centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
(x, y), radius = cv2.minEnclosingCircle(c)
if radius < self.min_radius:
min_radius_abs = self.min_radius * frame.shape[0]
if radius < min_radius_abs:
print('Radius:', radius, 'Min radius:', min_radius_abs)
self.history.appendleft(None)
return None
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
try:
center = int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])
except ZeroDivisionError:
# It's weird but happened yeah
self.history.append(None)
return None
self.history.appendleft((center, int(radius)))
print('Ball:', center, radius)
return center, int(radius)
def draw(self, frame):
ball = self.find_colored_ball(frame)
self.history.appendleft(ball)
def draw(self, frame, ball):
if ball is not None:
center, radius = ball
cv2.circle(frame, center, radius, (255, 255, 0), 1)
cv2.circle(frame, center, 5, (0, 255, 0), -1)
# cv2.circle(frame, center, 5, (0, 255, 0), -1)
# loop over the set of tracked points
for i in range(1, len(self.history)):
# for i in range(1, len(self.history)):
# if either of the tracked points are None, ignore them
if self.history[i - 1] is None or self.history[i] is None:
continue
# if self.history[i - 1] is None or self.history[i] is None:
# continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
center_now = self.history[i - 1][0]
center_prev = self.history[i][0]
thickness = int((64 / (i + 1))**0.5 * 2.5)
cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)
# def load_hsv_config(self, filename):
# with open(filename) as f:
# hsv = json.load(f)
# self.hsv_lower = tuple(map(hsv.get, ('low_h', 'low_s', 'low_v')))
# self.hsv_upper = tuple(map(hsv.get, ('high_h', 'high_s', 'high_v')))
# center_now = self.history[i - 1][0]
# center_prev = self.history[i][0]
# thickness = int((64 / (i + 1))**0.5 * 2.5)
# cv2.line(frame, center_now, center_prev, (0, 255, 0), thickness)