started work on goal alignment
This commit is contained in:
@@ -3,6 +3,73 @@ from collections import deque
|
||||
import cv2
|
||||
|
||||
|
||||
class GoalFinder(object):
|
||||
|
||||
def __init__(self, hsv_lower, hsv_upper):
|
||||
|
||||
self.hsv_lower = hsv_lower
|
||||
self.hsv_upper = hsv_upper
|
||||
|
||||
def goal_similarity(self, contour):
|
||||
contour = contour.reshape((-1, 2))
|
||||
hull = cv2.convexHull(contour).reshape((-1, 2))
|
||||
len_h = cv2.arcLength(hull, True)
|
||||
|
||||
# Wild assumption that the goal should lie close to its
|
||||
# enclosing convex hull
|
||||
shape_sim = np.linalg.norm(contour[:,None] - hull,
|
||||
axis=2).min(axis=1).sum() / len_h
|
||||
|
||||
# Wild assumption that the area of the goal is rather small
|
||||
# compared to its enclosing convex hull
|
||||
area_c = cv2.contourArea(contour)
|
||||
area_h = cv2.contourArea(hull)
|
||||
|
||||
area_sim = area_c / area_h
|
||||
|
||||
# Final similarity score is just the sum of both
|
||||
final_score = shape_sim + area_sim
|
||||
print(shape_sim, area_sim, final_score)
|
||||
return final_score
|
||||
|
||||
def find_goal_contour(self, frame)
|
||||
thr =
|
||||
|
||||
# The ususal
|
||||
thr = cv2.erode(thr, None, iterations=2)
|
||||
thr = cv2.dilate(thr, None, iterations=2)
|
||||
cnts, _ = cv2.findContours(thr, cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
areas = np.array([cv2.contourArea(cnt) for cnt in cnts])
|
||||
# Candidates are at most 6 biggest white areas
|
||||
top_x = 6
|
||||
if len(areas) > top_x:
|
||||
cnt_ind = np.argpartition(areas, -top_x)[-top_x:]
|
||||
cnts = [cnts[i] for i in cnt_ind]
|
||||
|
||||
perimeters = np.array([cv2.arcLength(cnt, True) for cnt in cnts])
|
||||
epsilon = 0.01 * perimeters
|
||||
|
||||
# Approximate resulting contours with simpler lines
|
||||
cnts = [cv2.approxPolyDP(cnt, eps, True)
|
||||
for cnt, eps in zip(cnts, epsilon)]
|
||||
|
||||
# Goal needs normally 8 points for perfect approximation
|
||||
# But with 6 can also be approximated
|
||||
good_cnts = [cnt for cnt in cnts if 6 <= cnt.shape[0] <= 9
|
||||
and not cv2.isContourConvex(cnt)]
|
||||
|
||||
if not good_cnts:
|
||||
return None
|
||||
|
||||
similarities = [self.goal_similarity(cnt) for cnt in good_cnts]
|
||||
best = min(similarities)
|
||||
if best > 0.4:
|
||||
return None
|
||||
# Find the contour with the shape closest to that of the goal
|
||||
goal = good_cnts[similarities.index(best)]
|
||||
|
||||
|
||||
class BallFinder(object):
|
||||
|
||||
def __init__(self, hsv_lower, hsv_upper, min_radius, viz=False):
|
||||
|
||||
Reference in New Issue
Block a user