added live_recognition_with_head.py

This commit is contained in:
Jonas
2018-05-31 21:10:21 +02:00
parent 47f2d31ba9
commit f7de796054

View File

@@ -0,0 +1,233 @@
from __future__ import print_function
from __future__ import division
import cv2
import numpy as np
#import imutils
from naoqi import ALProxy
from collections import deque
# Nao configuration
nao_ip = '192.168.0.10'
nao_port = 9559
#res = (3, (960, 1280)) # NAOQi code and acutal resolution
res=(1,(240,320))
#res=(2,(480,640))
fps = 30
cam_id = 0 # 0 := top, 1 := bottom
# Recognition stuff
red_lower = (0, 185, 170) # HSV coded red interval
red_upper = (6, 255, 255)
min_radius = 5
resized_width = None # Maybe we need it maybe don't (None if don't)
global current_value
current_value=0
def get_angle():
robotIP="192.168.0.10"
PORT = 9559
motionProxy = ALProxy("ALMotion", robotIP, PORT)
names=["HeadPitch","HeadYaw"]
useSensors=False
angle=motionProxy.getAngles(names,useSensors)
#print("angle_is"+str(angles))
return angle
def set_angle(direction):
#def main(robotIP,x,y):
robotIP="192.168.0.10"
PORT = 9559
motionProxy = ALProxy("ALMotion", robotIP, PORT)
# activiert gelenke
motionProxy.setStiffnesses("Head", 1.0)
#names = "HeadYaw"
#useSensors = False
#commandAngles = motionProxy.getAngles(names, useSensors)
#type(commandAngles)
#type(float(commandAngles))
#current_angle=float(commandAngles)
#print(current_angle)
#next_angle=float(commandAngles)-0.2
#print("next_angle"+str(next_angle))
#angles = [0,next_angle]
#print("set_angle")
# Example showing how to set angles, using a fraction of max speed
names = ["HeadYaw", "HeadPitch"]
#global current_value
a=get_angle()
#print(a[0])
# print(a)
#current_value=current_value-0.2
if direction=="up":
angles = [a[1],a[0]-0.2]
elif direction=="down":
angles = [a[1], a[0]+0.2]
elif direction=="right":
angles= [a[1]-0.2,a[0]]
elif direction=="left":
angles=[a[1]+0.2,a[0]]
fractionMaxSpeed = 0.5
motionProxy.setAngles(names, angles, fractionMaxSpeed)
def get_frame_nao(cam_proxy, subscriber, width, height):
result = cam_proxy.getImageRemote(subscriber)
cam_proxy.releaseImage(subscriber)
if result == None:
raise RuntimeError('cannot capture')
elif result[6] == None:
raise ValueError('no image data string')
else:
return np.frombuffer(result[6], dtype=np.uint8).reshape(
height, width, 3
)
# i = 0
# for y in range(res[1][0]):
# for x in range(res[1][1]): # columnwise
# image.itemset((y, x, 0), values[i + 0])
# image.itemset((y, x, 1), values[i + 1])
# image.itemset((y, x, 2), values[i + 2])
# i += 3
# return image
def find_colored_ball(frame, hsv_lower, hsv_upper, min_radius,motionProxy):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform a series of
# dilations and erosions to remove any small blobs left in the mask
mask = cv2.inRange(hsv, hsv_lower, hsv_upper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cv2.imshow('ball_mask', mask)
cv2.waitKey(1)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
# only proceed if at least one contour was found
if len(cnts) == 0:
return None
# find the largest contour in the mask, then use it to compute
# the minimum enclosing circle and centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius < min_radius:
return None
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
#print("center is: "+str(center[0]))
x=center[0]
y=center[1]
print(str(y))
#print(type(get_angle()))
a=get_angle()
print(a[0])
print(a[1])
#print(get_angle())
# print("angle_is"+str(get_angle()))
if 0<y<100:
# # activiert gelenke
motionProxy.setStiffnesses("Head", 1.0)
# move head up
set_angle("up")
elif 240>y>200:
set_angle("down")
elif 0<x<100:
set_angle("left")
elif 320>x>220:
set_angle("right")
return center, int(radius)
def draw_ball_markers(frame, center, radius, history):
# draw the enclosing circle and ball's centroid on the frame,
if center is not None and radius is not None:
cv2.circle(frame, center, radius, (255, 255, 0), 1)
cv2.circle(frame, center, 5, (0, 255, 0), -1)
# loop over the set of tracked points
for i in range(1, len(history)):
# if either of the tracked points are None, ignore them
if history[i - 1] is None or history[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
cv2.line(frame, history[i - 1], history[i], (0, 255, 0), thickness)
# check if head has to be moved according to the ball
#y_history=history[len(history) - 1]
#y_history=int(y_history)
#print(str(type(y_history)))
#wert=y_history[0]
#print("y="+str(wert))
return frame
def nao_demo():
cv2.namedWindow('ball_mask')
cv2.namedWindow('Frame')
vd_proxy = ALProxy('ALVideoDevice', nao_ip, nao_port)
cam_subscriber = vd_proxy.subscribeCamera(
"ball_finder", cam_id, res[0], 13, fps
)
history = deque(maxlen=64)
motionProxy = ALProxy("ALMotion", nao_ip, nao_port)
try:
while True:
frame = get_frame_nao(vd_proxy, cam_subscriber, res[1][1],
res[1][0])
# maybe resize the frame, maybe blur it
if resized_width is not None:
frame = imutils.resize(frame, width=resized_width)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
try:
center, radius = find_colored_ball(
frame, red_lower, red_upper, min_radius,motionProxy
)
history.appendleft(center)
draw_ball_markers(frame, center, radius, history)
except TypeError: # No red ball found and function returned None
history.appendleft(None)
draw_ball_markers(frame, None, None, history)
# show the frame to screen
cv2.imshow("Frame", frame)
cv2.waitKey(1)
finally:
vd_proxy.unsubscribe(cam_subscriber)
cv2.destroyAllWindows()
if __name__ == '__main__':
nao_demo()