added live_recognition_with_head.py
This commit is contained in:
233
scripts/live_recognition_with_head.py
Normal file
233
scripts/live_recognition_with_head.py
Normal file
@@ -0,0 +1,233 @@
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
#import imutils
|
||||
from naoqi import ALProxy
|
||||
from collections import deque
|
||||
|
||||
|
||||
# Nao configuration
|
||||
nao_ip = '192.168.0.10'
|
||||
nao_port = 9559
|
||||
#res = (3, (960, 1280)) # NAOQi code and acutal resolution
|
||||
res=(1,(240,320))
|
||||
#res=(2,(480,640))
|
||||
|
||||
fps = 30
|
||||
cam_id = 0 # 0 := top, 1 := bottom
|
||||
|
||||
# Recognition stuff
|
||||
red_lower = (0, 185, 170) # HSV coded red interval
|
||||
red_upper = (6, 255, 255)
|
||||
min_radius = 5
|
||||
resized_width = None # Maybe we need it maybe don't (None if don't)
|
||||
|
||||
global current_value
|
||||
current_value=0
|
||||
|
||||
def get_angle():
|
||||
robotIP="192.168.0.10"
|
||||
PORT = 9559
|
||||
motionProxy = ALProxy("ALMotion", robotIP, PORT)
|
||||
names=["HeadPitch","HeadYaw"]
|
||||
useSensors=False
|
||||
angle=motionProxy.getAngles(names,useSensors)
|
||||
#print("angle_is"+str(angles))
|
||||
return angle
|
||||
|
||||
def set_angle(direction):
|
||||
#def main(robotIP,x,y):
|
||||
robotIP="192.168.0.10"
|
||||
PORT = 9559
|
||||
motionProxy = ALProxy("ALMotion", robotIP, PORT)
|
||||
# activiert gelenke
|
||||
motionProxy.setStiffnesses("Head", 1.0)
|
||||
|
||||
|
||||
#names = "HeadYaw"
|
||||
#useSensors = False
|
||||
|
||||
#commandAngles = motionProxy.getAngles(names, useSensors)
|
||||
|
||||
#type(commandAngles)
|
||||
#type(float(commandAngles))
|
||||
#current_angle=float(commandAngles)
|
||||
#print(current_angle)
|
||||
#next_angle=float(commandAngles)-0.2
|
||||
#print("next_angle"+str(next_angle))
|
||||
#angles = [0,next_angle]
|
||||
|
||||
|
||||
|
||||
#print("set_angle")
|
||||
# Example showing how to set angles, using a fraction of max speed
|
||||
names = ["HeadYaw", "HeadPitch"]
|
||||
#global current_value
|
||||
a=get_angle()
|
||||
#print(a[0])
|
||||
# print(a)
|
||||
|
||||
|
||||
#current_value=current_value-0.2
|
||||
if direction=="up":
|
||||
angles = [a[1],a[0]-0.2]
|
||||
elif direction=="down":
|
||||
angles = [a[1], a[0]+0.2]
|
||||
elif direction=="right":
|
||||
angles= [a[1]-0.2,a[0]]
|
||||
elif direction=="left":
|
||||
angles=[a[1]+0.2,a[0]]
|
||||
fractionMaxSpeed = 0.5
|
||||
|
||||
motionProxy.setAngles(names, angles, fractionMaxSpeed)
|
||||
|
||||
|
||||
|
||||
def get_frame_nao(cam_proxy, subscriber, width, height):
|
||||
result = cam_proxy.getImageRemote(subscriber)
|
||||
cam_proxy.releaseImage(subscriber)
|
||||
if result == None:
|
||||
raise RuntimeError('cannot capture')
|
||||
elif result[6] == None:
|
||||
raise ValueError('no image data string')
|
||||
else:
|
||||
return np.frombuffer(result[6], dtype=np.uint8).reshape(
|
||||
height, width, 3
|
||||
)
|
||||
# i = 0
|
||||
# for y in range(res[1][0]):
|
||||
# for x in range(res[1][1]): # columnwise
|
||||
# image.itemset((y, x, 0), values[i + 0])
|
||||
# image.itemset((y, x, 1), values[i + 1])
|
||||
# image.itemset((y, x, 2), values[i + 2])
|
||||
# i += 3
|
||||
# return image
|
||||
|
||||
|
||||
def find_colored_ball(frame, hsv_lower, hsv_upper, min_radius,motionProxy):
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# construct a mask for the color "green", then perform a series of
|
||||
# dilations and erosions to remove any small blobs left in the mask
|
||||
mask = cv2.inRange(hsv, hsv_lower, hsv_upper)
|
||||
mask = cv2.erode(mask, None, iterations=2)
|
||||
mask = cv2.dilate(mask, None, iterations=2)
|
||||
cv2.imshow('ball_mask', mask)
|
||||
cv2.waitKey(1)
|
||||
|
||||
# find contours in the mask and initialize the current
|
||||
# (x, y) center of the ball
|
||||
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)[-2]
|
||||
|
||||
# only proceed if at least one contour was found
|
||||
if len(cnts) == 0:
|
||||
return None
|
||||
|
||||
# find the largest contour in the mask, then use it to compute
|
||||
# the minimum enclosing circle and centroid
|
||||
c = max(cnts, key=cv2.contourArea)
|
||||
((x, y), radius) = cv2.minEnclosingCircle(c)
|
||||
|
||||
if radius < min_radius:
|
||||
return None
|
||||
|
||||
M = cv2.moments(c)
|
||||
center = (int(M["m10"] / M["m00"]),int(M["m01"] // M["m00"]))
|
||||
#print("center is: "+str(center[0]))
|
||||
x=center[0]
|
||||
y=center[1]
|
||||
print(str(y))
|
||||
#print(type(get_angle()))
|
||||
a=get_angle()
|
||||
print(a[0])
|
||||
print(a[1])
|
||||
|
||||
#print(get_angle())
|
||||
# print("angle_is"+str(get_angle()))
|
||||
if 0<y<100:
|
||||
# # activiert gelenke
|
||||
motionProxy.setStiffnesses("Head", 1.0)
|
||||
|
||||
# move head up
|
||||
set_angle("up")
|
||||
elif 240>y>200:
|
||||
set_angle("down")
|
||||
elif 0<x<100:
|
||||
set_angle("left")
|
||||
elif 320>x>220:
|
||||
set_angle("right")
|
||||
|
||||
return center, int(radius)
|
||||
|
||||
|
||||
def draw_ball_markers(frame, center, radius, history):
|
||||
# draw the enclosing circle and ball's centroid on the frame,
|
||||
if center is not None and radius is not None:
|
||||
cv2.circle(frame, center, radius, (255, 255, 0), 1)
|
||||
cv2.circle(frame, center, 5, (0, 255, 0), -1)
|
||||
|
||||
# loop over the set of tracked points
|
||||
for i in range(1, len(history)):
|
||||
# if either of the tracked points are None, ignore them
|
||||
if history[i - 1] is None or history[i] is None:
|
||||
continue
|
||||
# otherwise, compute the thickness of the line and
|
||||
# draw the connecting lines
|
||||
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
|
||||
cv2.line(frame, history[i - 1], history[i], (0, 255, 0), thickness)
|
||||
|
||||
# check if head has to be moved according to the ball
|
||||
#y_history=history[len(history) - 1]
|
||||
#y_history=int(y_history)
|
||||
#print(str(type(y_history)))
|
||||
#wert=y_history[0]
|
||||
#print("y="+str(wert))
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def nao_demo():
|
||||
cv2.namedWindow('ball_mask')
|
||||
cv2.namedWindow('Frame')
|
||||
|
||||
vd_proxy = ALProxy('ALVideoDevice', nao_ip, nao_port)
|
||||
cam_subscriber = vd_proxy.subscribeCamera(
|
||||
"ball_finder", cam_id, res[0], 13, fps
|
||||
)
|
||||
history = deque(maxlen=64)
|
||||
motionProxy = ALProxy("ALMotion", nao_ip, nao_port)
|
||||
|
||||
try:
|
||||
while True:
|
||||
frame = get_frame_nao(vd_proxy, cam_subscriber, res[1][1],
|
||||
res[1][0])
|
||||
|
||||
# maybe resize the frame, maybe blur it
|
||||
if resized_width is not None:
|
||||
frame = imutils.resize(frame, width=resized_width)
|
||||
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
|
||||
|
||||
try:
|
||||
center, radius = find_colored_ball(
|
||||
frame, red_lower, red_upper, min_radius,motionProxy
|
||||
)
|
||||
history.appendleft(center)
|
||||
draw_ball_markers(frame, center, radius, history)
|
||||
except TypeError: # No red ball found and function returned None
|
||||
history.appendleft(None)
|
||||
draw_ball_markers(frame, None, None, history)
|
||||
|
||||
# show the frame to screen
|
||||
cv2.imshow("Frame", frame)
|
||||
cv2.waitKey(1)
|
||||
|
||||
finally:
|
||||
vd_proxy.unsubscribe(cam_subscriber)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
nao_demo()
|
||||
Reference in New Issue
Block a user